Автор: Пользователь скрыл имя, 24 Декабря 2011 в 20:55, курсовая работа
Программные средства, базирующиеся на технологии и методах искусственного интеллекта, получили значительное распространение в мире. Их важность, и, в первую очередь, экспертных систем и нейронных сетей, состоит в том, что данные технологии существенно расширяют круг практически значимых задач, которые можно решать на компьютерах, и их решение приносит значительный экономический эффект. В то же время, технология экспертных систем является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки приложений; высокая стоимость сопровождения сложных систем; повторная используемость программ и т.п.
Введение………………………………….……………………………….3
1. Основные производители……………………………………………..5
2. История возникновения и развития языка ПРОЛОГ……….……….6
3. Исчисление высказываний…………………………………....………9
3.1. Исчисление предикатов…………………………………………….11
3.2. Программирование на ПРОЛОГЕ…………………………………14
3.3. Принцип резолюций……………………………………..…………16
3.4. Поиск доказательства в системе резолюций………………….…..18 Заключение……………………………………………………………….22
Список литературы………..…………………………………………..…24
Содержание.
Введение………………………………….……………………
1. Основные
производители……………………………………………
2. История возникновения и развития языка ПРОЛОГ……….……….6
3. Исчисление высказываний…………………………………....…
3.1. Исчисление предикатов…………………………………………….11
3.2. Программирование на ПРОЛОГЕ…………………………………14
3.3. Принцип резолюций……………………………………..…………
3.4. Поиск доказательства
в системе резолюций………………….…..18 Заключение……………………………………………………
Список литературы………..……………………
Введение.
Программные средства, базирующиеся на технологии и методах искусственного интеллекта, получили значительное распространение в мире. Их важность, и, в первую очередь, экспертных систем и нейронных сетей, состоит в том, что данные технологии существенно расширяют круг практически значимых задач, которые можно решать на компьютерах, и их решение приносит значительный экономический эффект. В то же время, технология экспертных систем является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки приложений; высокая стоимость сопровождения сложных систем; повторная используемость программ и т.п. Кроме того, объединение технологий экспертных систем и нейронных сетей с технологией традиционного программирования добавляет новые качества к коммерческим продуктам за счет обеспечения динамической модификации приложений пользователем, а не программистом, большей "прозрачности" приложения (например, знания хранятся на ограниченном естественном языке, что не требует комментариев к ним, упрощает обучение и сопровождение), лучших графических средств, пользовательского интерфейса и взаимодействия.
По
мнению специалистов, в недалекой перспективе
экспертные системы будут играть ведущую
роль во всех фазах проектирования, разработки,
производства, распределения, продажи,
поддержки и оказания услуг. Их технология,
получив коммерческое распространение,
обеспечит революционный прорыв в интеграции
приложений из готовых интеллектуально-
Среди специализированных систем, основанных на знаниях, наиболее значимы экспертные системы реального времени, или динамические экспертные системы. На их долю приходится 70 процентов этого рынка.
Значимость инструментальных средств реального времени определяется не столько их бурным коммерческим успехом (хотя и это достойно тщательного анализа), но, в первую очередь, тем, что только с помощью подобных средств создаются стратегически значимые приложения в таких областях, как управление непрерывными производственными процессами в химии, фармакологии, производстве цемента, продуктов питания и т.п., аэрокосмические исследования, транспортировка и переработка нефти и газа, управление атомными и тепловыми электростанциями, финансовые операции, связь и многие другие.
Классы задач, решаемых экспертными системами реального времени, таковы: мониторинг в реальном масштабе времени, системы управления верхнего уровня, системы обнаружения неисправностей, диагностика, составление расписаний, планирование, оптимизация, системы-советчики оператора, системы проектирования.
Коммерческие успехи к экспертным системам и нейронным сетям пришли не сразу. На протяжении ряда лет (с 1960-х годов) успехи касались в основном исследовательских разработок, демонстрировавших пригодность систем искусственного интеллекта для практического использования. Начиная примерно с 1985 (а в массовом масштабе, вероятно, с 1988-1990 годов), в первую очередь, экспертные системы, а в последние два года и нейронные сети стали активно использоваться в реальных приложениях.
1. Основные производители.
Инструментарий
для создания экспертных систем реального
времени впервые выпустила
Еще в конце 1970-х годов стала отчетливо просматриваться тенденция к использованию в исследованиях в области искусственного интеллекта "формальных" методов, т.е. основанных на аппарате математической логики. Эти методы противопоставлялись более интуитивным и менее формализованным эвристическим методам, скажем, таким, которые были использованы в системе MYCIN. Для того чтобы стало ясно, что все это значит, нужно познакомить вас с логическими языками, а затем показать, как соотносятся их свойства с теми методами рассуждений, которые должны поддерживать типовые экспертные системы.
Математическая логика является формальным языком в том смысле, что в отношении любой последовательности символов она позволяет сказать, удовлетворяет ли эта последовательность правилам конструирования выражений в этом языке (формулам). Обычно формальным языкам противопоставляются естественные, такие как французский и английский, в которых грамматические правила не являются жесткими. Утверждение, что логика является исчислением с определенными синтаксическими правилами логического вывода, означает, что влияние одних членов выражения на другие зависит только от формы выражения в данном языке и ни коим образом не зависит от каких-либо посторонних идей или интуитивных предположений.
Под автоматическим формированием суждений понимается поведение некоторой компьютерной программы, которая строит логический вывод на основании определенных законов. Так, нельзя отнести к классу программ автоматического формирования суждений программу, которая моделирует подбрасывание монетки, чтобы определить, следует ли одна формула из набора других. (В литературе также часто встречается термин автоматическая дедукция, равнозначный по смыслу термину автоматическое формирование суждений.)
При
реализации автоматического формирования
суждений, как правило, стремятся к максимально
возможному единообразию и стандартизации
в представлении формул, но в то же время
в литературе часто приходится сталкиваться
с самыми разнообразными системами обозначений,
относящихся к логике. Основными синтаксическими
схемами представления выражений являются
конъюнктивная нормальная форма (conjunctive
normal form— CNF), полная фразовая форма (full
clausal form) и фраза Хорна (Horn clause), последняя
является подмножеством полной фразовой
формы.
2. История возникновения и развития языка ПРОЛОГ.
На протяжении многих тысячелетий человечество занимается накоплением, обработкой и передачей знаний. Для этих целей непрерывно изобретаются новые средства и совершенствуются старые: речь, письменность, почта, телеграф, телефон и т. д. Большую роль в технологии обработки знаний сыграло появление компьютеров.
В октябре 1981 года Японское министерство международной торговли и промышленности объявило о создании исследовательской организации — Института по разработке методов создания компьютеров нового поколения (Institute for New Generation Computer Technology Research Center). Целью данного проекта было создание систем обработки информации, базирующихся на знаниях. Предполагалось, что эти системы будут обеспечивать простоту управления за счет возможности общения с пользователями при помощи естественного языка. Эти системы должны были самообучаться, использовать накапливаемые в памяти знания для решения различного рода задач, предоставлять пользователям экспертные консультации, причем от пользователя не требовалось быть специалистом в информатике. Предполагалось, что человек сможет использовать ЭВМ пятого поколения так же легко, как любые бытовые электроприборы типа телевизора, магнитофона и пылесоса. Вскоре вслед за японским стартовали американский и европейский проекты.
Появление таких систем могло бы изменить технологии за счет использования баз знаний и экспертных систем. Основная суть качественного перехода к пятому поколению ЭВМ заключалась в переходе от обработки данных к обработке знаний. Японцы надеялись, что им удастся не подстраивать мышление человека под принципы функционирования компьютеров, а приблизить работу компьютера к тому, как мыслит человек, отойдя при этом от фон неймановской архитектуры компьютеров. В 1991 году предполагалось создать первый прототип компьютеров пятого поколения.
Теперь уже понятно, что поставленные цели в полной мере так и не были достигнуты, однако этот проект послужил импульсом к развитию нового витка исследований в области искусственного интеллекта и вызвал взрыв интереса к логическому программированию. Так как для эффективной реализации традиционная фон неймановская архитектура не подходила, были созданы специализированные компьютеры логического программирования PSI и PIM.
В
качестве основной методологии разработки
программных средств для
Название языка "Пролог" происходит от слов ЛОГическое ПРОграммирование (PROgrammation en LOGique во французском варианте и PROgramming in LOGic — в английском).
Пролог основывается на таком разделе математической логики, как исчисление предикатов. Точнее, его базис составляет процедура доказательства теорем методом резолюции для хорновских дизъюнктов.
В
истории возникновения и
В 1965 году в работе "A machine oriented logic based on the resolution principle", опубликованной в 12 номере журнала "Journal of the ACM", Дж Робинсон представил метод автоматического поиска доказательства теорем в исчислении предикатов первого порядка, получивший название "принцип резолюции". На самом деле, идея данного метода была предложена Эрбраном в 1931 году, когда еще не было компьютеров. Робинсон модифицировал этот метод так, что он стал пригоден для автоматического, компьютерного использования, и, кроме того, разработал эффективный алгоритм унификации, составляющий базис его метода.
В 1973 году "группа искусственного интеллекта" во главе с Аланом Колмероэ создала в Марсельском университете программу, предназначенную для доказательства теорем. Эта программа использовалась при построении систем обработки текстов на естественном языке. Программа доказательства теорем получила название Prolog (от Programmation en Logique). Она и послужила прообразом Пролога. Ходят легенды, что автором этого названия была жена Алана Колмероэ. Программа была написана на Фортране и работала довольно медленно.
Большое значение для развития логического программирования имела работа Роберта Ковальского "Логика предикатов как язык программирования" (Kowalski R. Predicate Logic as Programming Language. IFIP Congress, 1974), в которой он показал, что для того чтобы добиться эффективности, нужно ограничиться использованием множества хорновских дизъюнктов. Кстати, известно, что Ковальский и Колмероэ работали вместе в течение одного лета.
В
1976 г. Ковальский вместе с его коллегой
Маартеном ван Эмденом
В
1977 году в Эдинбурге Уоррен и Перейра
создали очень эффективный
В
1980 году Кларк и Маккейб в
В 1981 году стартовал вышеупомянутый проект Института по разработке методов создания компьютеров нового поколения.
На сегодня существует довольно много реализаций Пролога. Наиболее известные из них следующие: BinProlog, AMZI-Prolog, Arity Prolog, CProlog, Micro Prolog, МПролог, Prolog-2, Quintus Prolog, SICTUS Prolog, Silogic Knowledge Workbench, Strawberry Prolog, SWI Prolog, UNSW Prolog и т. д.
В нашей стране были разработаны такие версии Пролога как Пролог-Д (Сергей Григорьев), Акторный Пролог (Алексей Морозов), а также Флэнг (А. Манцивода, Вячеслав Петухин).