Автор: Пользователь скрыл имя, 18 Июня 2012 в 11:52, курсовая работа
Целью работы было: изучение применения производной для решения задач по алгебре и началам анализа, физике, экономике; углубление и расширение знаний по теме «Производная».
Введение……………………………………………………………………………………3
Теоретическая часть…………………………………………….........................................5
1. Понятие производной………………………………………………………………….5
1.1 Исторические сведения………………………………………………………………..5
1.2 Задачи, приводящие к понятию производной……………………………………….6
1.3 Определение производной……………………………………………………………9
2. Общее правило нахождения производной……………………………………………11
2.1 Геометрический смысл производной………………………………………………..12
2.2 Механический смысл производной………………………………………………….13
2.3 Производная 2 порядка и её механический смысл…………………………………14
2.4 Определение и геометрический смысл дифференциала…………………………...15
Практическая часть……………………………………………………………………….17
3. Примеры решения практических задач………………………………………………17
4. Заключение……………………………………………………………………………..27
5. Список литературы…………………………………………………………………….28
Пример 1
Многочлен разложить по целым положительным степеням бинома х-2.
Решение.
Отсюда:
Следовательно, или
Пример 2
Функцию разложить по степени бинома х+1 до члена, содержащего
Решение
для всех n, Следовательно ,
где
Пример 3
Разложить функцию в ряд Маклорена.
Решение.
Как известно, этот интеграл нельзя выразить через элементарные функции. Для отыскания разложения данного интеграла в ряд Маклорена необходимо разложить подынтегральную функцию в степенной ряд, а затем почленно проинтегрировать (степенной ряд сходится равномерно на любом отрезке, лежащем внутри промежутка сходимости, поэтому его можно проинтегрировать почленно).
ЗАКЛЮЧЕНИЕ
Применение производной довольно широко и его сложно полностью охватить в работе такого типа, однако я попыталась раскрыть основные, базовые моменты. В наше время, в связи с научно-техническим прогрессом, в частности с быстрой эволюцией вычислительных систем, дифференциальное исчисление становится все более актуальным в решении как простых, так и сверхсложных задач.
СПИСОК ЛИТЕРАТУРЫ:
1. М. Я. Выгодский «Справочник по высшей математике»- М. : ACT: Астрель, 2006.
2. Л. Д. Кудрявцев «Курс математического анализа» : учебник для вузов / Л. Д. Кудрявцев . - М. : Высш. шк., 1988.
3. Волькенштейн В.С. «Сборник задач по общему курсу физики» М., 1979 г.
4. «Математический энциклопедический словарь.»/Гл.ред. Ю.В.Прохоров.-М:Сов.
5. «Задачи и упражнения по математическому анализу для вузов.»/Под ред. Б.П.Демидовича- М: Физматгиз, 1963 г. 472 стр.
6. «Элементы высшей математики»: сб. заданий для практ. занятий: Учеб. Пособие/ С.В.Сочнев.-М: Высш.шк., 2003 г.- 192 с.
7. А. С. Солодовников, В. А. Бабайцев, А. В. Браилов, И. Г. Шандра «Математика в экономике» - Издательство: Финансы и статистика, 2007 г.
|
14
Информация о работе Применение производной в различных задачах естествознания