Автор: Пользователь скрыл имя, 13 Марта 2012 в 16:12, курсовая работа
Цель данной курсовой работы выяснить, что такое преобразование Фурье, рассмотреть основные виды преобразований Фурье, интегрирование обобщённых функций.
Введение. 3
Глава 1. Преобразование Фурье. 4
1.1. Применения преобразования Фурье. 4
1.2. Разновидности преобразования Фурье. 5
1.2.1. Многомерное преобразование Фурье. 5
1.2.2. Ряды Фурье. 5
1.2.3. Дискретное преобразование Фурье. 6
1.2.4. Оконное преобразование Фурье. 7
1.3. Таблица важных преобразований Фурье. 8
Глава 2. Дифференцирование и интегрирование обобщённых функций. 10
2.1. Основные определения. 10
2.2. Пример. 12
Заключение. 13
Список использованной литературы. 14
Федеральное государственное
бюджетное образовательное учреждение
высшего профессионального образования
Тюменский Государственный Университет
Институт Математики Естественных Наук и Информационных Технологий
Кафедра Математики и Информатики
Курсовая работа
по дисциплине
«Математический анализ»
на тему
Преобразование Фурье.
Интегрирование обобщённых функций.
Выполнил:
студент 303-2 гр.
Савчук А.В.
Проверила:
к. ф.-м. н., доцент
кафедры МиИ
Салтанова Т.
В.
Тюмень 2011
Оглавление
Введение. 3
Глава 1. Преобразование Фурье. 4
1.1. Применения преобразования Фурье. 4
1.2. Разновидности преобразования Фурье. 5
1.2.1. Многомерное преобразование Фурье. 5
1.2.2. Ряды Фурье. 5
1.2.3. Дискретное преобразование Фурье. 6
1.2.4. Оконное преобразование Фурье. 7
1.3. Таблица важных преобразований Фурье. 8
Глава 2. Дифференцирование и интегрирование обобщённых функций. 10
2.1. Основные определения. 10
2.2. Пример. 12
Заключение. 13
Список использованной литературы. 14
Преобразование Фурье
Аналогичные операции можно производить
с помощью математических методов
над звуковыми волнами или
практически над любыми другими
колебательными процессами — от световых
волн и океанских приливов до циклов
солнечной активности. Пользуясь
этими математическими
Цель данной курсовой работы выяснить, что такое преобразование Фурье, рассмотреть основные виды преобразований Фурье, интегрирование обобщённых функций.
Преобразование Фурье —
Преобразование Фурье функции f вещественной переменной является интегральным преобразованием и задается следующей формулой:
Преобразование Фурье
Преобразование Фурье функций, заданных на пространстве , определяется формулой
Здесь ω и x — векторы пространства , — их скалярное произведение. Обратное преобразование в этом случае задается формулой
Эта формула может быть интерпретирована как разложение функции f в линейную комбинацию (суперпозицию) «плоских волн» вида с амплитудами , частотами ω и фазовыми сдвигами arg соответственно. Как и прежде, в разных источниках определения многомерного преобразования Фурье могут отличаться выбором константы перед интегралом.
Замечание относительно области задания преобразования Фурье и его основные свойства остаются справедливыми и в многомерном случае, со следующими уточнениями:
.
.
Непрерывное преобразование само фактически является обобщением более ранней идеи рядов Фурье, которые определены для 2π-периодических функций и представляют собой разложение таких функций в (бесконечную) линейную комбинацию гармонических колебаний с целыми частотами:
Разложение в ряд Фурье
Иными словами, преобразование Фурье
периодической функции
Дискретное преобразование Фурье — преобразование конечных последовательностей (комплексных) чисел, которое, как и в непрерывном случае, превращает свёртку в поточечное умножение. Используется в цифровой обработке сигналов и в других ситуациях, где необходимо быстро выполнять свёртку, например, при умножении больших чисел.
Пусть — последовательность комплексных чисел. Рассмотрим многочлен Выберем какие-нибудь n точек на комплексной плоскости. Теперь многочлену f(t) мы можем сопоставить новый набор из n чисел: Заметим, что это преобразование обратимо: для любого набора чисел существует единственный многочлен f(t) степени не выше n − 1 с такими значениями в соответственно.
Набор и называется дискретным преобразованием Фурье исходного набора В качестве точек обычно выбирают корни n-й степени из единицы:
Такой выбор продиктован тем, что в этом случае обратное преобразование принимает простую форму, а также тем, что вычисление преобразования Фурье может быть выполнено особенно быстро. Так, в то время как вычисление свёртки двух последовательностей длины n напрямую требует порядка операций, переход к их преобразованию Фурье и обратно по быстрому алгоритму может быть выполнен за O(n*log n) операций. Для преобразований Фурье свёртке соответствует покомпонентное умножение, которое требует лишь порядка n операций.
где даёт (вообще говоря несколько искажённое) распределение частот части оригинального сигнала f(t) в окрестности времени t.
Классическое преобразование Фурье
имеет дело со спектром сигнала, взятым
во всем диапазоне существования
переменной. Нередко интерес представляет
только локальное распределение
частот, в то время как требуется
сохранить изначальную
На практике дискретный спектральный анализ реализован в современных цифровых осциллографах и анализаторах спектра. Используется, как правило, выбор окна из 3—10 типов окон. Применение окон принципиально необходимо, поскольку в реальных приборах исследуется всегда некоторая вырезка из исследуемого сигнала. При этом разрывы сигнала вследствие вырезки резко искажают спектр из-за наложения спектров скачков на спектр сигнала.
Некоторые анализаторы спектра используют быстрое (или кратковременное) оконное преобразование. При нём сигнал заданной длительности разбивается на ряд интервалов с помощью скользящего окна того или иного типа. Это позволяет получать, исследовать и строить в виде спектрограмм динамические спектры и анализировать их поведение во времени. Спектрограмма строится в трёх координатах — частота, время и амплитуда. При этом амплитуда задаётся цветом или оттенком цвета каждого прямоугольника спектрограммы. Подобные анализаторы спектра называют анализаторами спектра реального времени. Основным их производителем является корпорация Tektronix (США). Такие анализаторы появились в конце прошлого века и ныне бурно развиваются. Частотный диапазон исследуемых ими сигналов достигает сотен ГГц.
Указанные методы спектрального анализа реализуются и в системах компьютерной математики, например, Mathcad, Mathematica, Maple и MATLAB.
Следующая таблица содержит список важных формул для преобразования Фурье F(ω) и G(ω) обозначают фурье компоненты функций f(t) и g(t), соответственно. f и g должны быть интегрируемыми функциями или обобщёнными функциями.
Помните, что соотношения в этой
таблице и в особенности
|
Функция |
Образ |
Примечания |
1 |
af(t) +bg(t) |
Линейность | |
2 |
f(t-a) |
Запаздывание | |
3 |
Частотный сдвиг | ||
4 |
f(at) |
Если a большое, то f(at) сосредоточена около 0 и | |
5 |
Свойство преобразования Фурье от n-й производной | ||
6 |
Это обращение правила 5 | ||
7 |
Запись f * g означает свёртку f и g. Это правило — теорема о свёртке | ||
8 |
f(t)g(t) |
Это обращение 7 | |
9 |
δ(t) означает дельта-функцию Дирака | ||
10 |
1 |
Обращение 9. | |
11 |
Здесь, n — натуральное число, δn(ω) — n-я обобщённая производная дельта-функции Дирака. Следствие правил 6 и 10. Использование его вместе с правилом 1 позволяет делать преобразования любых многочленов | ||
12 |
Следствие 3 и 10 | ||
13 |
cos(at) |
|
Следствие 1 и 12 с использованием формулы Эйлера |
14 |
sin(at) |
|
Также из 1 и 12 |
15 |
Показывает, что функция Гаусса exp( − t2 / 2) совпадает со своим изображением | ||
16 |
Прямоугольная функция — идеальный фильтр низких частот и функция sinc(x) — её временной эквивалент | ||
17 |
Здесь — sgn(ω) sign функция. Это правило согласуется с 6 и 10 | ||
18 |
|
Обобщение 17 | |
19 |
sgn(t) |
Обращение 17 | |
20 |
Здесь H(t) — функция Хевисайда. Следует из правил 1 и 19 |
Информация о работе Преобразование Фурье. Интегрирование обобщённых функций