Автор: Пользователь скрыл имя, 14 Января 2012 в 11:20, лекция
Классическое определение вероятности применимо только для очень узкого класса задач, где все возможные исходы опыта можно свести к схеме случаев. В большинстве реальных задач эта схема неприменима. В таких ситуациях требуется определять вероятность собы-тия иным образом. Для этого введем вначале понятие относительной частоты W(A) события A как отношения числа опытов, в которых наблюдалось событие А, к общему количеству проведенных испытаний
Относительная частота. Статистическое определение вероятности.
Классическое
определение вероятности
где N – общее число опытов, М – число появлений события А.
Большое количество
экспериментов показало, что если
опыты проводятся в одинаковых условиях,
то для большого количества испытаний
относительная частота
Определение 1.9. Статистической вероятностью события считают его относительную частоту или число, близкое к ней.
Замечание 1. Из формулы (1.2) следует, что свойства вероятности, доказанные для ее классического определения, справедливы и для статистического определения вероят-ности.
Замечание 2. Для существования статистической вероятности события А требуется:
1) возможность производить неограниченное число испытаний;
2) устойчивость относительных частот появления А в различных сериях достаточно большого числа опытов.
Замечание 3. Недостатком статистического определения является неоднозначность статистической вероятности.
Пример. Если в задаче задается вероятность попадания в мишень для данного стрелка (скажем, р = 0,7), то эта величина получена в результате изучения статистики большого количества серий выстрелов, в которых этот стрелок попадал в мишень около семидесяти раз из каждой сотни выстрелов.
Информация о работе Относительная частота. Статистическое определение вероятности