Автор: Пользователь скрыл имя, 08 Декабря 2010 в 21:59, реферат
Случайная величина является вторым (после случайного события) основным объектом изучения теории вероятностей и обеспечивает более общий способ описания опыта со случайным исходом, чем совокупность случайных событий.
Математическое ожидание и дисперсия являются примерами моментов случайной величины, которые определяются следующим образом.
Два числа не отражают всех особенностей плотности, в частности, степень симметрии или асимметрии плотности относительно математического ожидания - это новая характеристика, которую можно определить как некоторое число.
1. Случайные величины 2
2. Моменты случайной величины 4
3. Коэффициент асимметрии 6
4. Коэффициент эксцесса 8
5. Нормальный закон распределения. 9
Кафедра
Высшей метаматематики
и информатики
по
дисциплине Теория вероятности
и математическая статистика
Тема: Моменты распределения
случайной величины (дискретной, непрерывной).
Коэффициент асимметрии. Эксцесс. Нормальный
закон распределения, его характеристики.
Выполнил:
студент группы
(подпись студента)
______________________________
Оценка________________________
Содержание
Случайная величина является вторым (после случайного события) основным объектом изучения теории вероятностей и обеспечивает более общий способ описания опыта со случайным исходом, чем совокупность случайных событий.
Рассматривая эксперименты со случайным исходом, мы уже имели дело со случайными величинами. Так, число успехов в серии из испытаний - пример случайной величины. Другими примерами случайных величин являются: число вызовов на телефонной станции за единицу времени; время ожидания очередного вызова; число частиц с заданной энергией в системах частиц, рассматриваемых в статистической физике; средняя суточная температура в данной местности и т.д.
Случайная величина характерна тем, что невозможно точно предсказать ее значение, которое она примет, но с другой стороны, множество ее возможных значений обычно известно. Так для числа успехов в последовательности из испытаний это множество конечно, поскольку число успехов может принимать значения . Множество значений случайной величины, может совпадать с вещественной полуосью , как в случае времени ожидания и т.д.
Рассмотрим примеры экспериментов со случайным исходом, для описания которых обычно применяются случайные события и введем эквивалентное описание с помощью задания случайной величины.
1). Пусть результатом опыта может быть событие или событие . Тогда этому эксперименту можно поставить в соответствие случайную величину , которая принимает два значения, например, и с вероятностями и , причем имеют место равенства: и . Таким образом, опыт характеризуется двумя исходами и с вероятностями и , или этот же опыт характеризуется случайной величиной , принимающей два значения и с вероятностями и .
2).
Рассмотрим опыт с бросанием
игральной кости. Здесь
3). Последовательность независимых испытаний характеризуется полной группой несовместных событий , где - событие, состоящее в появлении успехов в серии из опытов; причем вероятность события определяется формулой Бернули, т.е. . Здесь можно ввести случайную величину - число успехов, которая принимает значения с вероятностями . Таким образом, последовательность независимых испытаний характеризуется случайными событиями с их вероятностями или случайной величиной с вероятностями того, что принимает значения : , .
4).
Однако, не для всякого опыта
со случайным исходом
(1.1)
является функцией аргумента . Это усложняет математическое описание случайной величины, но при этом описание (29.1) становится единственным, устраняется неоднозначность выбора отрезков .
Для каждого из рассмотренных примеров несложно определить вероятностное пространство , где - пространство элементарных событий, - - алгебра событий (подмножеств ), - вероятность, определенная для любого . Например, в последнем примере , - - алгебра всех отрезков , содержащихся в .
Рассмотренные примеры приводят к следующему определению случайной величины.
Пусть - вероятностное пространство. Случайной величиной называется однозначная действительная функция , определенная на , для которой множество элементарных событий вида является событием (т.е. принадлежат ) для каждого действительного числа .
Таким
образом, в определении требуется,
чтобы для каждого
Математическое ожидание и дисперсия являются примерами моментов случайной величины, которые определяются следующим образом.
Начальным моментом порядка непрерывной случайной величины с плотностью распределения вероятности называется число
. (2.1)
Порядок момента - это неотрицательное целое число, т.е. .
Начальным моментом порядка дискретной случайной величины , принимающей значения с вероятностями , , называется число
. (2.2)
Определение (2.1) можно рассматривать как универсальное определение для непрерывных и для дискретных случайных величин. В последнем случае плотность вероятности выражается через - функцию согласно формуле
Однако на практике для вычисления момента дискретной величины удобнее использовать соотношение (2.2).
Центральным моментом порядка случайной величины называется число
. (2.3)
Для непрерывной случайной величины с плотностью вероятности центральный момент порядка имеет вид:
. (2.4)
Из всего множества начальных и центральных моментов обычно используются моменты невысоких порядков, до включительно, как более простые характеристики случайной величины. Применение моментов высоких порядков, , ограничено. Во-первых, при больших моменты могут не существовать, поскольку могут расходиться интегралы (2.1), (2.4). И во-вторых, интерпретация моментов высших порядков затруднена.
Рассмотрим начальные моменты, начиная с . При этом из (2.1) следует
. (2.5)
Итак, начальный момент нулевого порядка для любой случайной величины, следовательно, этот момент не отражает каких-либо свойств случайной величины, т.е. не является ее характеристикой. При из (2.1) следует, что момент первого порядка - это математическое ожидание случайной величины. Разные случайные величины могут иметь разные математические ожидания, и поэтому число является характеристикой случайной величины: число указывает положение центра ее плотности вероятности.
Момент второго порядка
(2.6)
- это среднее квадрата случайной величины, и т.д.
Рассмотрим аналогично центральные моменты (2.4). При получаем - одинаковый результат для любой случайной величины. Поэтому данный момент не является характеристикой случайной величины, поскольку не отражает каких-либо ее свойств. При . Этот результат также одинаков для любой случайной величины, поэтому центральный момент первого порядка не является характеристикой случайной величины. При из (2.4) получаем дисперсию
(2.7)
-
важнейшую числовую
Моменты третьего и четвертого порядков будут рассмотрены в дальнейшем.
Среднее и дисперсия случайной величины - это числа, которые определяют такие свойства ее плотности вероятности как положение центра и эффективную ширину. Очевидно, эти два числа не отражают всех особенностей плотности, в частности, степень симметрии или асимметрии плотности относительно математического ожидания - это новая характеристика, которую можно определить как некоторое число.
Для любой симметричной плотности центральные моменты нечетного порядка равны нулю (доказательство приводится ниже). Поэтому простейший среди них - центральный момент третьего порядка может характеризовать асимметрию плотности распределения:
, (3.1)
где - математическое ожидание, - центральный момент - го порядка.
Асимметрию
принято характеризовать
, (3.2)
где - дисперсия случайной величины .
Рассмотрим доказательство утверждения о том, что для симметричной плотности центральные моменты нечетных порядков равны нулю.
1). Пусть - симметричная функция относительно некоторой точки , тогда
, (3.3)
поскольку - антисимметричная функция относительно . Отсюда следует:
. (3.4)
Таким образом, если - симметричная функция относительно точки , то - точка симметрии плотности вероятности – это математическое ожидание случайной величины.
2). Пусть - нечетное целое и - симметричная функция, тогда , поскольку - симметрична относительно математического ожидания , и - антисимметрична относительно .
Выражение (3.2) для можно представить через начальные моменты , . Из определения следует:
.
Аналогично центральный момент третьего порядка
.
Пусть случайная величина имеет плотность вероятности:
, (3.6)
(распределение Рэлея), тогда вычисление и подстановка в (3.2) приводит к результату .
Плотность вероятности с имеет более тяжелый «хвост» в области больших положительных аргументов, и наоборот, при более тяжелым является «хвост» плотности в области отрицательных аргументов.