Автор: Пользователь скрыл имя, 08 Января 2012 в 21:35, доклад
Нау́ка — особый вид познавательной деятельности, направленной на получение, уточнение и производство объективных, системно-организованных и обоснованных знаний о природе, обществе и мышлении.
Эпистемологические проблемы математики тесно связаны с онтологическими, т.к. от понимания ее объектов и предмета исследования зависит оценка методов ее познания. Сторонники платонизма, или реализма, рассматривая абстрактные объекты математики как априорные, неизменные и не связанные с материальным миром, считают основным средством познания интеллектуальную интуицию, не подверженную случайностям опыта. Поскольку при этом математика оказывается изолированной от реального мира и конкретных наук, то некоторые реалисты начинают сближать интеллектуальную интуицию с чувственной.
Структуралисты,
особенно эмпирического толка, рассматривают
математические структуры как некоторые
абстрактные схемы, приближенно
верно описывающие свойства и
отношения реальных систем, от которых
можно отвлечься в
Допуская возможность создания таких понятий мышлением субъекта, интуиционисты, на первый взгляд, оправдывают их существование в математике, но не объясняют, как чисто субъективные создания мысли оказываются применимыми для познания реальной действительности. Более адекватно объясняют процесс создания таких далеких от эмпирической действительности понятий, как «бесконечность», сторонники конструктивного направления. Марков убедительно показывает, что подобные понятия создаются с помощью абстракции потенциальной осуществимости построения математических объектов: «Абстракция потенциальной осуществимости позволяет нам рассуждать о сколь угодно длинных конструктивных процессах и сколь угодно больших конструктивных объектах. Их осуществимость потенциальная: они были бы осуществимы практически, располагай мы достаточным пространством, временем и материалом». На основе этой абстракции возникает понятие «потенциальная бесконечность», которое интуиционисты и конструктивисты противопоставляют понятию «актуальная бесконечность» сторонников платонизма и математического реализма, оказывающемуся источником возникновения парадоксов в канторовской теории множеств.
Различие онтологических и эпистемологических подходов в Ф. м. явно выражается и в решении специальных проблем обоснования математики сторонниками разных его направлений. Так, напр., представители платонизма признают существование актуальной бесконечности в математике и поэтому допускают применение в ней закона исключенного третьего и «чистых» (косвенных) доказательств существования. Их оппоненты — интуиционисты и конструктивисты — решительно возражают против этого, поскольку они отвергают актуальную бесконечность и признают лишь бесконечность потенциальную, к которой неприменим закон исключенного третьего, а доказательствами считаются только конструктивные доказательства, где искомый объект либо фактически, либо потенциально может быть построен.
В математической практике объективность и необходимость полученных результатов обычно обосновывается применимостью их в естествознании и др. конкретных науках, ближе стоящих к эмпирической реальности.
Информация о работе Место математики в системе наук. Специфика математического знания