Автор: Пользователь скрыл имя, 13 Января 2012 в 07:29, контрольная работа
Итак, для определения стоимости собственности, приносящей до ход, необходимо определить текущую стоимость денег, которые будут получены через какоето время в будущем.
Известно, а в условиях инфляции куда более очевидно, что деньги изменяют свою стоимость с течением времени. Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.
Математические основы оценочной деятельности. Шесть функций денежной единицы
Математические основы оценочной деятельности. Шесть функций денежной единицы
Итак, для
определения стоимости
Известно, а в условиях инфляции куда более очевидно, что деньги изменяют свою стоимость с течением времени. Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.
Накопление – это процесс приведения текущей стоимости денег к их будущей стоимости, при условии, что вложенная сумма удерживается на счету в течение определенного времени, принося периодически нака пливаемый процент.
Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.
В оценке эти финансовые расчеты базируются на сложном процессе, когда каждое последующее начисление ставки процента осуществля ется как на основную сумму, так и на начисленные за предыдущие периоды невыплаченные проценты.
Всего рассматривают шесть функций денежной единицы, основанных на сложном проценте. Для упрощения расчетов разработаны таблицы шести функций для известных ставок дохода и периода накопления ( I и n ), кроме того, можно воспользоваться финансовым калькуля тором для расчета искомой величины.
1 функция: Будущая стоимость денежной единицы (накопленная сумма денежной единицы), ( fvf , i , n ).
Если начисления осуществляются чаще, чем один раз в год, то формула преобразуется в следующую:
k – частота накоплений в год.
Данная функция используется в том случае, когда известна текущая стоимость денег и необходимо определить будущую стоимость де нежной единицы при известной ставке доходов на конец определенного периода ( n ).
Правило 72х
Для примерного определения срока удвоения капитала (в годах) необходимо 72 разделить на целочисленное значение годовой ставки до хода на капитал. Правило действует для ставок от 3 до 18%.
Типичным примером для будущей стоимости денежной единицы может служить задача.
Определить, какая сумма будет накоплена на счете к концу 3го
года, если сегодня положить на счет, приносящий 10% годовых, 10 000
рублей.
FV=10000[(1+0,1)3]=13310.
2 функция : Текущая стоимость единицы (текущая стоимость реверсии (перепродажи)), ( pvf , i , n ).
Текущая стоимость единицы является обратной относительно бу дущей стоимости.
Если начисление процентов осуществляется чаще, чем один раз в год, то
Примером задачи может служить следующая: Сколько нужно вложить сегодня, чтобы к концу 5го года получить на счете 8000, если годовая ставка дохода 10%.
3 функция : Текущая стоимость аннуитета ( pvaf , i , n ).
Аннуитет – это серия равновеликих платежей (поступлений), отстоящих друг от друга на один и тот же промежуток времени.
Выделяют обычный и авансовый аннуитеты. Если платежи осуще ствляются в конце каждого периода, то аннуитет обычный, если в начале – авансовый.
Формула текущей стоимости обычного аннуитета:
PMT – равновеликие
периодические платежи. Если
Формула текущей стоимости авансового аннуитета:
Типовой пример:
Договор аренды дачи составлен на 1 год. Платежи осуществляются ежемесячно по 1000 рублей. Определить текущую стоимость аренд ных платежей при 12% ставке дисконтирования, если а) платежи осуществляются в конце месяца; б) платежи осуществляются в начале каждого месяца.
4 функция : Накопление денежной единицы за период ( fvfa , i , n ).
В результате использования данной функции определяется буду щая стоимость серии равновеликих периодических платежей (поступле ний).
Платежи также могут осуществляться в начале и в конце периода.
Формула обычного аннуитета:
Типовой пример:
Определить сумму, которая будет накоплена на счете, приносящем 12% годовых, к концу 5го года, если ежегодно откладывать на счет 10 000 рублей а) в конце каждого года; б) в начале каждого года.
5 функция : Взнос на амортизацию денежной единицы ( iaof , i , n ) Функция является обратной величиной текущей стоимости обыч ного аннуитета. Взнос на амортизацию денежной единицы используется для определения величины аннуитетного платежа в счет погашения кредита, выданного на определенный период при заданной ставке по креди ту.
Амортизация – это процесс, определяемый данной функцией, включает проценты по кредиту и оплату основной суммы долга.
При платежах, осуществляемых чаще, чем 1 раз в год используется следующая формула:
Примером может служить следующая задача: Определить, каким должны быть платежи, чтобы к концу 7го года погасить кредит в 100 000 рублей, выданный под 15% годовых.
6 функция : Фактор фонда возмещения ( sff , i , n )
Данная функция обратна функции накопления единицы за период. Фактор фонда возмещения показывает аннуитетный платеж, который необходимо депонировать под заданный процент в конце каждого пе риода для того, чтобы через заданное число периодов получить искомую сумму.
Для определения величины платежа используется формула:
При платежах (поступлениях), осуществляемых чаще, чем 1 раз в год:
Примером может служить задача.
Определить, какими должны быть платежи, чтобы к концу 5го го да иметь на счете, приносящем 12% годовых, 100 000 рублей. Платежи осуществляются в конце каждого года.
Аннуитетный платеж, определяемый данной функцией, включает выплату основной суммы без выплат процента.
Информация о работе Математические основы оценочной деятельности. Шесть функций денежной единицы