Автор: Пользователь скрыл имя, 01 Декабря 2011 в 07:19, биография
Леонард Эйлер родился в апреле 1707 года в городе Базель (Швейцария) в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (который в молодости занимался математикой под руководством Я.Бернулли), затем поступил (осенью 1720 года) в Базельский университет, где в 1724 году произнёс речь, посвящённую сравнению философии Р. Декарта и И.Ньютона, и был удостоен степени магистра исскуств.
Эйлер явился создателем вариационного исчисления, изложенного в работе "Метод нахождения кривых линий, обладающих точками максимума, либо минимума..." (1744). Несколько позднее Ж. Лангранж существенно переработал и усовершенствовал метод Эйлера, ввёл понятие и знак вариации. После чего Эйлер оригинально изложил вариационное исчисление в ряде статей "Интегрального исчисления". Метод, с помощью которого Эйлер в 1744 году вывел необходимое условие экстремума функционала (см. приложение 2), явился прообразом прямых методов вариационного исчисления 20 века; позднее Эйлер ввёл в рассмотрение поле экстремалей.
Систематически развивая новые приёмы интегрирования дифференциальных уравнений, введя ряд основных понятий в этой области, Эйлер создал как самостоятельную дисциплину теорию обыкновенных дифференциальных уравнений и заложил основы теории уравнений с частными производными. Здесь ему принадлежит огромное число открытий: классический общий способ решения линейных уравнений с постоянными коэффициентами, метод вариации произвольных постоянных, выяснение основных свойств уравнения Риккати, интегрирование линейных уравнений с переменными коэффициентами (в частности, т.н. уравнения Бесселя) с помощью бесконечных рядов, критерии особых решений, учение об интегрирующем множителе, различные приближённые методы и ряд приёмов решения уравнений с частными производными. Значительную часть этих результатов Эйлер собрал в своём "Интегральном исчислении".
Эйлер обогатил также дифференциальное и интегральное исчисление в узком смысле слова. Достаточно назвать широкое развитие учения о замене переменных, теорему об однородных функциях, см. приложение №3, понятие двойного интеграла (известное также Ж.Лангранжу) и вычисление многих специальных интегралов (см. приложение №4). В теорию рядов Эйлер внёс новые идеи, которые показывают, что он умел видеть на многие десятилетия вперёд. Примером может служить его трактовка проблемы сходимости рядов. В "Дифференциальном исчислении" Эйлер высказал и подкрепил примерами убеждение в целесообразности применения расходящихся рядов и предложил методы обобщенного суммирования рядов. При тогдашнем состоянии науки он не мог выяснить и даже вполне конкретно поставить вопрос об условиях, в которых законны его определения и методы; он не знал также всей важности построения теории сходимости рядов. Тем не менее в своих воззрениях и в методах суммирования он предвосхищал идеи современной строгой теории расходящихся рядов, созданной на рубеже 19 и 20 вв. Кроме того, Эйлер получил в теории рядов множество конкретных результатов. Он открыл т.н. формулу суммирования Эйлера - Маклорена, предложил преобразование рядов, носящее его имя, определил сумму громадного количества рядов, ввёл в математику новые важные типы рядов (напр., тригонометрические ряды, т.н. ряды Ламберта). Сюда же примыкают исследования Эйлера по теме теории непрерывных дробей и др. бесконечных процессов.
Эйлер является основоположником теории специальных функций. Он первым начал рассматривать синус и косинус как функции, а не как отрезки в круге. Им получены почти все классические разложения элементарных функций в бесконечные ряды и произведения. В его трудах создана теория гамма функций. Он исследовал свойства элиптичных интегралов, гиперболических и цилиндрических функций, дзета-функции, некоторых тэта-функций, интегрального логарифма и важных классов специальных многочленов.
По замечанию П..Чебышева, Эйлер положил начало всем изысканиям, составляющим общую часть теории чисел, к которой относится свыше 100 мемуаров Эйлера. Так, Эйлер доказал ряд утверждений, высказанных П.Ферма, разработал основы теории степенных вычетов и теории квадратичных форм, обнаружил (но не доказал) квадратичный закон взаимности и исследовал ряд задач диофантова анализа. В работах о разбиении чисел на слагаемые и по теории простых чисел Эйлер впервые использовал методы анализа, явившись тем самым создателем аналитической теории чисел. В частности, он ввёл знаменитую дзева - функцию и доказал т. н. тождество Эйлера, связывающее простые числа со всеми натуральными.
Великие заслуги
Эйлера и в других областях математики.
В алгебре ему принадлежат
работы о решении в радикалах
уравнений высшей степеней и об уравнениях
с двумя неизвестными, а также
т.н. тождество Эйлера о четырёх
квадратах. Эйлер значительно продвинул
аналитическую геометрию, особенно
учение о поверхностях 2-го порядка.
В дифференциальной геометрии он
детально исследовал свойства геодезических
линий, впервые применил натуральные
уравнения кривых, а главное, заложил
основы теории поверхностей. Он ввёл понятие
главных направлений в точке,
поверхности, доказал их ортогональность,
вывел формулу для кривизны любого
нормального сечения, начал изучение
развёртывающихся поверхностей. Эйлер
занимался и отдельными вопросами
топологии и, например, доказал важную
теорему о выпуклых многогранниках
(встречающуюся в рукописях Р.
Эйлера - математика
нередко характеризуют как
По выражению П. Лапласса, Эйлер явился общим учителем математиков 2-й половины 18 века. От его работ непосредственно отправлялись в разнообразных исследованиях П.Лаплас, Ж.Лагранж, Г.Монж, А.Лежандр, К.Гаусс, позднее О.Кошл, М.В.Остроградский, П.Л.Чебышев и др. Русские математики высоко ценили творчество Эйлера, а деятели чебышевской школы видели в Эйлере своего идейного предшественника в его постоянном чувстве конкретности, в интересе к конкретным трудным задачам, требующим развития новых методов, в стремлении получать решения задач в форме законченных алгоритмов, позволяющих находить ответ с любой требуемой степенью точности