Леонард Эйлер

Автор: Пользователь скрыл имя, 01 Декабря 2011 в 07:19, биография

Описание работы

Леонард Эйлер родился в апреле 1707 года в городе Базель (Швейцария) в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (который в молодости занимался математикой под руководством Я.Бернулли), затем поступил (осенью 1720 года) в Базельский университет, где в 1724 году произнёс речь, посвящённую сравнению философии Р. Декарта и И.Ньютона, и был удостоен степени магистра исскуств.

Работа содержит 1 файл

Смастоялка.docx

— 29.67 Кб (Скачать)

Эйлер явился создателем вариационного исчисления, изложенного  в работе "Метод нахождения кривых линий, обладающих точками максимума, либо минимума..." (1744). Несколько позднее  Ж. Лангранж существенно переработал и усовершенствовал метод Эйлера, ввёл понятие и знак вариации. После чего Эйлер оригинально изложил вариационное исчисление в ряде статей "Интегрального исчисления". Метод, с помощью которого Эйлер в 1744 году вывел необходимое условие экстремума функционала (см. приложение 2), явился прообразом прямых методов вариационного исчисления 20 века; позднее Эйлер ввёл в рассмотрение поле экстремалей.

Систематически  развивая новые приёмы интегрирования дифференциальных уравнений, введя  ряд основных понятий в этой области, Эйлер создал как самостоятельную  дисциплину теорию обыкновенных дифференциальных уравнений и заложил основы теории уравнений с частными производными. Здесь ему принадлежит огромное число открытий: классический общий способ решения линейных уравнений с постоянными коэффициентами, метод вариации произвольных постоянных, выяснение основных свойств уравнения Риккати, интегрирование линейных уравнений с переменными коэффициентами (в частности, т.н. уравнения Бесселя) с помощью бесконечных рядов, критерии особых решений, учение об интегрирующем множителе, различные приближённые методы и ряд приёмов решения уравнений с частными производными. Значительную часть этих результатов Эйлер собрал в своём "Интегральном исчислении".

Эйлер обогатил также дифференциальное и интегральное исчисление в узком смысле слова. Достаточно назвать широкое развитие учения о замене переменных, теорему  об однородных функциях, см. приложение №3, понятие двойного интеграла (известное также Ж.Лангранжу) и вычисление многих специальных интегралов (см. приложение №4). В теорию рядов Эйлер внёс новые идеи, которые показывают, что он умел видеть на многие десятилетия вперёд. Примером может служить его трактовка проблемы сходимости рядов. В "Дифференциальном исчислении" Эйлер высказал и подкрепил примерами убеждение в целесообразности применения расходящихся рядов и предложил методы обобщенного суммирования рядов. При тогдашнем состоянии науки он не мог выяснить и даже вполне конкретно поставить вопрос об условиях, в которых законны его определения и методы; он не знал также всей важности построения теории сходимости рядов. Тем не менее в своих воззрениях и в методах суммирования он предвосхищал идеи современной строгой теории расходящихся рядов, созданной на рубеже 19 и 20 вв. Кроме того, Эйлер получил в теории рядов множество конкретных результатов. Он открыл т.н. формулу суммирования Эйлера - Маклорена, предложил преобразование рядов, носящее его имя, определил сумму громадного количества рядов, ввёл в математику новые важные типы рядов (напр., тригонометрические ряды, т.н. ряды Ламберта). Сюда же примыкают исследования Эйлера по теме теории непрерывных дробей и др. бесконечных процессов.

Эйлер является основоположником теории специальных  функций. Он первым начал рассматривать  синус и косинус как функции, а не как отрезки в круге. Им получены почти все классические разложения элементарных функций в  бесконечные ряды и произведения. В его трудах создана теория гамма  функций. Он исследовал свойства элиптичных интегралов, гиперболических и цилиндрических функций, дзета-функции, некоторых тэта-функций, интегрального логарифма и важных классов специальных многочленов.

По замечанию  П..Чебышева, Эйлер положил начало всем изысканиям, составляющим общую  часть теории чисел, к которой  относится свыше 100 мемуаров Эйлера. Так, Эйлер доказал ряд утверждений, высказанных П.Ферма, разработал основы теории степенных вычетов и теории квадратичных форм, обнаружил (но не доказал) квадратичный закон взаимности и  исследовал ряд задач диофантова анализа. В работах о разбиении чисел на слагаемые и по теории простых чисел Эйлер впервые использовал методы анализа, явившись тем самым создателем аналитической теории чисел. В частности, он ввёл знаменитую дзева - функцию и доказал т. н. тождество Эйлера, связывающее простые числа со всеми натуральными.

Великие заслуги  Эйлера и в других областях математики. В алгебре ему принадлежат  работы о решении в радикалах  уравнений высшей степеней и об уравнениях с двумя неизвестными, а также  т.н. тождество Эйлера о четырёх  квадратах. Эйлер значительно продвинул  аналитическую геометрию, особенно учение о поверхностях 2-го порядка. В дифференциальной геометрии он детально исследовал свойства геодезических  линий, впервые применил натуральные  уравнения кривых, а главное, заложил  основы теории поверхностей. Он ввёл понятие  главных направлений в точке, поверхности, доказал их ортогональность, вывел формулу для кривизны любого нормального сечения, начал изучение развёртывающихся поверхностей. Эйлер  занимался и отдельными вопросами  топологии и, например, доказал важную теорему о выпуклых многогранниках (встречающуюся в рукописях Р.Декарта  без доказательства).

Эйлера - математика нередко характеризуют как гениального "вычислителя". Действительно, он был непревзойдённым мастером формальных выкладок и преобразований, в его трудах многие математические формулы и символика впервые получают современный вид (например, ему принадлежат обозначения для e и ). Однако Эйлер был не только исключительной силы "вычислителем". Он внёс в науку ряд глубоких идей. Даже в тех вопросах, где он, как и другие математики 18 века, стоял на шаткой почве, его рассуждения, как правило, могут быть строго обоснованны и служат образцом глубины проникновения в предмет исследования.

По выражению  П. Лапласса, Эйлер явился общим учителем математиков 2-й половины 18 века. От его работ непосредственно отправлялись в разнообразных исследованиях П.Лаплас, Ж.Лагранж, Г.Монж, А.Лежандр, К.Гаусс, позднее О.Кошл, М.В.Остроградский, П.Л.Чебышев и др. Русские математики высоко ценили творчество Эйлера, а деятели чебышевской школы видели в Эйлере своего идейного предшественника в его постоянном чувстве конкретности, в интересе к конкретным трудным задачам, требующим развития новых методов, в стремлении получать решения задач в форме законченных алгоритмов, позволяющих находить ответ с любой требуемой степенью точности

Информация о работе Леонард Эйлер