Автор: Пользователь скрыл имя, 14 Декабря 2011 в 10:03, курсовая работа
Теория графов в качестве теоретической дисциплины может рассматриваться как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами.
Введение ………………………………………………………………………..3
Основные понятия теории графов……………………………………………..4
Операции над графами………...………………………………………...6
Основные теоремы теории графов……………………………………..15
Задача о соединении городов…….……………………………………………17
Задача о назначении на должность………………………………….….20
Генеалогические графы………………………………………………………...23
Список литературы……………………………………………………………..27
Граф G1´ G2 изображен на рис. 5.
Операция декартова произведения обладает следующими свойствами.
1. G1´G2 = G2´G1
2. G1´(G2´G3) = (G1´G2)´G3.
Операция декартова произведения графов может быть выполнена в матричной форме.
Пусть G1(X,E1) и G2(Y,E2) – два графа, имеющие nx и ny вершин соответственно. Результирующий граф G1´G2 имеет nx×ny вершин, а его матрица смежности вершин - квадратная матрица размером (nx×ny)´ (nx ×ny). Обозначим через aab = a(ij)(kl) элемент матрицы смежности вершин, указывающий на наличие дуги (ребра), соединяющей вершину za=(xiyj) c zb=(xkyl). Согласно определению операции этот элемент может быть вычислен при помощи матриц смежности вершин исходных графов следующим образом:
aab = a(ij)(kl) = Kik×a2,jl Ú Kjl×a1,ik,
где a1,ik, a2,jl – элементы матрицы смежности вершин графов G1 и G2 соответственно;
Kik
– символ Кронекера, равный 1, если i=k,
и нулю, если i¹k
.
Произведение графов. Пусть G1(X,E1) и G2(Y,E2) - два графа. Произведением G1×G2 графов G1 и G2 называется граф с множеством вершин X´Y, а дуга из вершины (xi,yj) в вершину (xk,yl) существует тогда и только тогда, когда существуют дуги (xi,xk) Î E1 и (yj,yl) Î E2.
Выполнение операции произведения рассмотрим на примере графов, изображенных на рис. 6. Множество вершин Z результирующего графа определяется как декартово произведение множеств X´Y. Множество Z содержит следующие элементы: z1=(x1y1), z2=(x1y2), z3=(x1y3), z4=(x2y1), z5=(x2y2), z6=(x2y3).
Определим
множество дуг результирующего
графа. Для удобства рассмотрения составим
таблицу, в первом столбце которой указываются
дуги графа G1, во втором
– дуги графа G2, а в третьем
и четвертом – дуги результирующего графа.
G1 | G2 | (x1,y1)®(x2,y1) | (za, zb) |
(x1,x2) | (y1,y1)
(y1,y2) (y2,y3) (y3,y2) |
(x1,y1)®(x2,y1)
(x1,y1)®(x2,y2) (x1,y2)®(x2,y3) (x1,y3)®(x2,y2) |
(z1,z4)
(z1,z5) (z2,z6) (z3,z5) |
(x2,x1) | (y1,y1)
(y1,y2) (y2,y3) (y3,y2) |
(x2,y1)®(x1,y1)
(x2,y1)®(x1,y2) (x2,y2)®(x1,y3) (x2,y3)®(x1,y2) |
(z4,z1)
(z4,z2) (z5,z3) (z6,z2) |
Результирующий граф G1×G2 изображен на рис. 6.
Операция произведения обладает следующими свойствами.
1. G1×G2 = G2×G1.
2. G1×(G2×G3) = (G1×G2)×G3.
Рассмотрим выполнение операции произведения графов в матричной форме.
Пусть G1(X,E1) и G2(Y,E2) – два графа, имеющие nx и ny вершин соответственно. Результирующий граф G1×G2 имеет nx×ny вершин, а его матрица смежности вершин - квадратная матрица размером (nx×ny)´ (nx ×ny). Обозначим через aab = a(ij)(kl) элемент матрицы смежности вершин, указывающий на наличие дуги (ребра), соединяющей вершину za=(xiyj) c zb=(xkyl). Этот элемент может быть вычислен при помощи матриц смежности вершин исходных графов следующим образом:
aab =a(ij)(kl) = a1,ik Ù a2,jl,
де
a1,ik, a1,ik – элементы
матрицы смежности вершин графов G1
и G2 соответственно.
ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ ГРАФОВ
Теорема 1. Удвоенная сумма степеней вершин любого графа равна числу его ребер.
Доказательство. Пусть А1, А2, А3, ..., An — вершины данного графа, a p(А1), p(А2), ..., p(An) – степени этих вершин. Подсчитаем число ребер, сходящихся в каждой вершине, и просуммируем эти числа. Это равносильно нахождению суммы степеней всех вершин. При таком подсчете каждое ребро будет учтено дважды (оно ведь всегда соединяет две вершины).
Отсюда следует: p(A1)+p(А2)+ ... +p(An)=0,5N, или 2(p(A1)+p(А2)+ ... +p(An))=N , где N — число ребер.
Теорема 2. Число нечетных вершин любого графа четно.
Доказательство. Пусть a1, a2, a3, …, ak — это степени четных вершин графа, а b1, b2, b3, …, bm — степени нечетных вершин графа. Сумма a1+a2+a3+…+ak+b1+b2+b3+…+bm ровно в два раза превышает число ребер графа. Сумма a1+a2+a3+…+ak четная (как сумма четных чисел), тогда сумма b1+b2+b3+…+bm должна быть четной. Это возможно лишь в том случае, если m — четное, то есть четным является и число нечетных вершин графа. Что и требовалось доказать.
Следствия этой теоремы.
Следствие 1. Нечетное число знакомых в любой компании всегда четно.
Следствие 2. Число вершин многогранника, в которых сходится нечетное число ребер, четно.
Следствие 3. Число всех людей, когда-либо пожавших руку другим людям, нечетное число раз, является четным.
Теорема 3. Во всяком графе с n вершинами, где n больше или равно 2, всегда найдутся две или более вершины с одинаковыми степенями.
Доказательство. Если граф имеет n вершин, то каждая из них может иметь степень 0, 1, 2, ..., (n-1). Предположим, что в некотором графе все его вершины имеют различную степень, то есть, и покажем, что этого быть не может. Действительно, если р(А)=0, то это значит, что А — изолированная вершина, и поэтому в графе не найдется вершины Х со степенью р(Х)=n-1. В самом деле, эта вершина должна быть соединена с (n-1) вершиной, в том числе и с А, но ведь А оказалась изолированной. Следовательно, в графе, имеющем n вершин, не могут быть одновременно вершины степени 0 и (n-1). Это значит, что из n вершин найдутся две, имеющие одинаковые степени.
Теорема 4. Если в графе с n вершинами (n больше или равно 2) только одна пара имеет одинаковую степень, то в этом графе всегда найдется либо единственная изолированная вершина, либо единственная вершина, соединенная со всеми другими.
Теорема 5. Если у графа все простые циклы четной длины, то он не содержит ни одного цикла четной длины.
Суть теоремы в том, что на этом графе невозможно найти цикл (как простой, так и непростой) нечетной длины, то есть содержащий нечетное число ребер.
Теорема 6. Для того, чтобы граф был эйлеровым, необходимо и достаточно, чтобы он был связным и все его вершины имели четную степень.
Теорема 7. Для того чтобы на связном графе можно было бы проложить цепь АВ, содержащую все его ребра в точности по одному разу, необходимо и достаточно, чтобы А и В были единственными нечетными вершинами этого графа.
Теорема 8. Если данный граф является связным и имеет 2k вершин нечетной степени, то в нем можно провести k различных цепей, содержащих все его ребра в совокупности ровно по одному разу.
Теорема 9. Полный граф с пятью вершинами не является плоским.
Доказательство. Воспользуемся формулой Эйлера: В-Р+Г=2, где В — число вершин плоского графа, Р — число его ребер, Г — число граней. Формула Эйлера справедлива для плоских связных графов, в которых ни один из многоугольников не лежит внутри другого.
Пусть все пять вершин графа соединены друг с другом. Замечаем, что на графе нет ни одной грани, ограниченной только двумя ребрами. Если через φ1 обозначить число таких граней, то φ2=0. Предположим, что исследуемый граф плоский. Это значит, что для него верна формула Эйлера. Число вершин в данном графе В=5, число ребер Р=10, тогда число граней Г=2-В+Р=2-5+10=7.
Это число можно представить в виде суммы: Г=φ1+φ2+φ3+…, где φ3 – число граней, ограниченных тремя ребрами, φ4 — число граней, ограниченных четырьмя ребрами и т. д.
С другой стороны, каждое ребро является границей двух граней, а поэтому число граней равно 2Р, в то же время 2Р=20=3φ3+4φ4+... . Умножив равенство Г=7=φ3+ φ4 + φ5 + … на три, получим ЗГ=21=3(φ3+ φ4 + φ5 + …).
Ясно, что (3φ3+3φ4+3φ5+…) < (3φ3+4φ4+ 5φ5+…) или 3Г<2Р, но по условию, 2Р=20, а ЗГ=21; поэтому вывод, полученный при введенном нами предположении (граф плоский), противоречит условию. Отсюда заключаем, что полный граф с пятью вершинами не является плоским.
Теорема 10. (Теорема Понтрягина-Куратовского) Граф является плоским тогда и только тогда, когда он не имеет в качестве подграфа полного графа с пятью вершинами.