Регрессия и корреляция

Автор: Пользователь скрыл имя, 23 Декабря 2012 в 09:18, курсовая работа

Описание работы

По предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов ( от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих ( ).

Работа содержит 1 файл

Mnozhestvennaya_regressia_i_korrelyatsia.doc

— 590.50 Кб (Скачать)

Множественная регрессия и корреляция

Пример. По предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов ( от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих ( ).

Номер предприятия

Номер предприятия

1

7,0

3,9

10,0

11

9,0

6,0

21,0

2

7,0

3,9

14,0

12

11,0

6,4

22,0

3

7,0

3,7

15,0

13

9,0

6,8

22,0

4

7,0

4,0

16,0

14

11,0

7,2

25,0

5

7,0

3,8

17,0

15

12,0

8,0

28,0

6

7,0

4,8

19,0

16

12,0

8,2

29,0

7

8,0

5,4

19,0

17

12,0

8,1

30,0

8

8,0

4,4

20,0

18

12,0

8,5

31,0

9

8,0

5,3

20,0

19

14,0

9,6

32,0

10

10,0

6,8

20,0

20

14,0

9,0

36,0


Требуется:

  1. Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
  2. Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.
  3. Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.
  4. С помощью -критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации .
  5. С помощью частных -критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора после и фактора после .
  6. Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор.

Решение

Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:

1

2

3

4

5

6

7

8

9

10

1

7,0

3,9

10,0

27,3

70,0

39,0

15,21

100,0

49,0

2

7,0

3,9

14,0

27,3

98,0

54,6

15,21

196,0

49,0

3

7,0

3,7

15,0

25,9

105,0

55,5

13,69

225,0

49,0

4

7,0

4,0

16,0

28,0

112,0

64,0

16,0

256,0

49,0

5

7,0

3,8

17,0

26,6

119,0

64,6

14,44

289,0

49,0

6

7,0

4,8

19,0

33,6

133,0

91,2

23,04

361,0

49,0

7

8,0

5,4

19,0

43,2

152,0

102,6

29,16

361,0

64,0

8

8,0

4,4

20,0

35,2

160,0

88,0

19,36

400,0

64,0

9

8,0

5,3

20,0

42,4

160,0

106,0

28,09

400,0

64,0

10

10,0

6,8

20,0

68,0

200,0

136,0

46,24

400,0

100,0

11

9,0

6,0

21,0

54,0

189,0

126,0

36,0

441,0

81,0

12

11,0

6,4

22,0

70,4

242,0

140,8

40,96

484,0

121,0

13

9,0

6,8

22,0

61,2

198,0

149,6

46,24

484,0

81,0

1

2

3

4

5

6

7

8

9

10

14

11,0

7,2

25,0

79,2

275,0

180,0

51,84

625,0

121,0

15

12,0

8,0

28,0

96,0

336,0

224,0

64,0

784,0

144,0

16

12,0

8,2

29,0

98,4

348,0

237,8

67,24

841,0

144,0

17

12,0

8,1

30,0

97,2

360,0

243,0

65,61

900,0

144,0

18

12,0

8,5

31,0

102,0

372,0

263,5

72,25

961,0

144,0

19

14,0

9,6

32,0

134,4

448,0

307,2

92,16

1024,0

196,0

20

14,0

9,0

36,0

126,0

504,0

324,0

81,0

1296,0

196,0

Сумма

192

123,8

446

1276,3

4581

2997,4

837,74

10828,0

1958,0

Ср. знач.

9,6

6,19

22,3

63,815

229,05

149,87

41,887

541,4

97,9


Найдем средние квадратические отклонения признаков:

;

;

.

  1. Вычисление параметров линейного уравнения множественной регрессии.

Для нахождения параметров линейного уравнения множественной  регрессии

необходимо решить следующую  систему линейных уравнений относительно неизвестных параметров , , :

либо воспользоваться  готовыми формулами:

;

.

Рассчитаем сначала  парные коэффициенты корреляции:

;

;

.

Находим

;

;

.

Таким образом, получили следующее уравнение множественной  регрессии:

.

Коэффициенты  и стандартизованного уравнения регрессии находятся по формулам:

;

.

Т.е. уравнение будет  выглядеть следующим образом:

.

Так как стандартизованные  коэффициенты регрессии можно сравнивать между собой, то можно сказать, что ввод в действие новых основных фондов оказывает большее влияние на выработку продукции, чем удельный вес рабочих высокой квалификации.

Сравнивать влияние факторов на результат можно также при  помощи средних коэффициентов эластичности:

.

Вычисляем:

.

Т.е. увеличение только основных фондов (от своего среднего значения) или только удельного веса рабочих высокой  квалификации на 1% увеличивает в среднем выработку продукции на 0,61% или 0,20% соответственно. Таким образом, подтверждается большее влияние на результат фактора , чем фактора .

  1. Коэффициенты парной корреляции мы уже нашли:

.

Они указывают на весьма сильную связь каждого фактора  с результатом, а также высокую  межфакторную зависимость (факторы  и явно коллинеарны, т.к. ). При такой сильной межфакторной зависимости рекомендуется один из факторов исключить из рассмотрения.

Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.

При двух факторах частные коэффициенты корреляции рассчитываются следующим  образом:

;

.

Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой  межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи. Именно по этой причине  рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.

Коэффициент множественной корреляции определить через матрицу парных коэффициентов корреляции:

,

где

– определитель матрицы  парных коэффициентов корреляции;

– определитель матрицы  межфакторной корреляции.

;

.

Коэффициент множественной  корреляции

.

Аналогичный результат  получим при использовании других формул:

;

;

.

Коэффициент множественной  корреляции показывает на весьма сильную связь всего набора факторов с результатом.

  1. Нескорректированный коэффициент множественной детерминации оценивает долю вариации результата за счет представленных в уравнении факторов в общей вариации результата. Здесь эта доля составляет и указывает на весьма высокую степень обусловленности вариации результата вариацией факторов, иными словами – на весьма тесную связь факторов с результатом.

Скорректированный коэффициент множественной детерминации

определяет тесноту  связи с учетом степеней свободы  общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и поэтому может сравниваться по разным моделям с разным числом факторов. Оба коэффициента указывают на весьма высокую (более ) детерминированность результата в модели факторами и .

  1. Оценку надежности уравнения регрессии в целом и показателя тесноты связи дает -критерий Фишера:

.

В нашем случае фактическое  значение -критерия Фишера:

.

Получили, что  (при ), т.е. вероятность случайно получить такое значение -критерия не превышает допустимый уровень значимости . Следовательно, полученное значение не случайно, оно сформировалось под влиянием существенных факторов, т.е. подтверждается статистическая значимость всего уравнения и показателя тесноты связи .

  1. С помощью частных -критериев Фишера оценим целесообразность включения в уравнение множественной регрессии фактора после и фактора после при помощи формул:

;

.

Найдем  и .

;

.

Имеем

;

.

Получили, что  . Следовательно, включение в модель фактора после того, как в модель включен фактор статистически нецелесообразно: прирост факторной дисперсии за счет дополнительного признака оказывается незначительным, несущественным; фактор включать в уравнение после фактора не следует.

Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения после , то результат расчета частного -критерия для будет иным. , т.е. вероятность его случайного формирования меньше принятого стандарта . Следовательно, значение частного -критерия для дополнительно включенного фактора не случайно, является статистически значимым, надежным, достоверным: прирост факторной дисперсии за счет дополнительного фактора является существенным. Фактор должен присутствовать в уравнении, в том числе в варианте, когда он дополнительно включается после фактора .

  1. Общий вывод состоит в том, что множественная модель с факторами и с содержит неинформативный фактор . Если исключить фактор , то можно ограничиться уравнением парной регрессии:

.

Варианты индивидуальных заданий

По 20 предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%) (смотри таблицу своего варианта).

Требуется:

  1. Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
  2. Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.
  3. Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.
  4. С помощью -критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации .
  5. С помощью частных -критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора после и фактора после .
  6. Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор.

 

Вариант 1

Номер предприятия

Номер предприятия

1

6

3,6

9

11

9

6,3

21

2

6

3,6

12

12

11

6,4

22

3

6

3,9

14

13

11

7

24

4

7

4,1

17

14

12

7,5

25

5

7

3,9

18

15

12

7,9

28

6

7

4,5

19

16

13

8,2

30

7

8

5,3

19

17

13

8

30

8

8

5,3

19

18

13

8,6

31

9

9

5,6

20

19

14

9,5

33

10

10

6,8

21

20

14

9

36

Информация о работе Регрессия и корреляция