Автор: Пользователь скрыл имя, 23 Декабря 2012 в 09:18, курсовая работа
По предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов ( от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих ( ).
Множественная регрессия и корреляция
Пример. По предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов ( от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих ( ).
Номер предприятия |
Номер предприятия |
||||||
1 |
7,0 |
3,9 |
10,0 |
11 |
9,0 |
6,0 |
21,0 |
2 |
7,0 |
3,9 |
14,0 |
12 |
11,0 |
6,4 |
22,0 |
3 |
7,0 |
3,7 |
15,0 |
13 |
9,0 |
6,8 |
22,0 |
4 |
7,0 |
4,0 |
16,0 |
14 |
11,0 |
7,2 |
25,0 |
5 |
7,0 |
3,8 |
17,0 |
15 |
12,0 |
8,0 |
28,0 |
6 |
7,0 |
4,8 |
19,0 |
16 |
12,0 |
8,2 |
29,0 |
7 |
8,0 |
5,4 |
19,0 |
17 |
12,0 |
8,1 |
30,0 |
8 |
8,0 |
4,4 |
20,0 |
18 |
12,0 |
8,5 |
31,0 |
9 |
8,0 |
5,3 |
20,0 |
19 |
14,0 |
9,6 |
32,0 |
10 |
10,0 |
6,8 |
20,0 |
20 |
14,0 |
9,0 |
36,0 |
Требуется:
Решение
Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:
№ |
|||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
7,0 |
3,9 |
10,0 |
27,3 |
70,0 |
39,0 |
15,21 |
100,0 |
49,0 |
2 |
7,0 |
3,9 |
14,0 |
27,3 |
98,0 |
54,6 |
15,21 |
196,0 |
49,0 |
3 |
7,0 |
3,7 |
15,0 |
25,9 |
105,0 |
55,5 |
13,69 |
225,0 |
49,0 |
4 |
7,0 |
4,0 |
16,0 |
28,0 |
112,0 |
64,0 |
16,0 |
256,0 |
49,0 |
5 |
7,0 |
3,8 |
17,0 |
26,6 |
119,0 |
64,6 |
14,44 |
289,0 |
49,0 |
6 |
7,0 |
4,8 |
19,0 |
33,6 |
133,0 |
91,2 |
23,04 |
361,0 |
49,0 |
7 |
8,0 |
5,4 |
19,0 |
43,2 |
152,0 |
102,6 |
29,16 |
361,0 |
64,0 |
8 |
8,0 |
4,4 |
20,0 |
35,2 |
160,0 |
88,0 |
19,36 |
400,0 |
64,0 |
9 |
8,0 |
5,3 |
20,0 |
42,4 |
160,0 |
106,0 |
28,09 |
400,0 |
64,0 |
10 |
10,0 |
6,8 |
20,0 |
68,0 |
200,0 |
136,0 |
46,24 |
400,0 |
100,0 |
11 |
9,0 |
6,0 |
21,0 |
54,0 |
189,0 |
126,0 |
36,0 |
441,0 |
81,0 |
12 |
11,0 |
6,4 |
22,0 |
70,4 |
242,0 |
140,8 |
40,96 |
484,0 |
121,0 |
13 |
9,0 |
6,8 |
22,0 |
61,2 |
198,0 |
149,6 |
46,24 |
484,0 |
81,0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
14 |
11,0 |
7,2 |
25,0 |
79,2 |
275,0 |
180,0 |
51,84 |
625,0 |
121,0 |
15 |
12,0 |
8,0 |
28,0 |
96,0 |
336,0 |
224,0 |
64,0 |
784,0 |
144,0 |
16 |
12,0 |
8,2 |
29,0 |
98,4 |
348,0 |
237,8 |
67,24 |
841,0 |
144,0 |
17 |
12,0 |
8,1 |
30,0 |
97,2 |
360,0 |
243,0 |
65,61 |
900,0 |
144,0 |
18 |
12,0 |
8,5 |
31,0 |
102,0 |
372,0 |
263,5 |
72,25 |
961,0 |
144,0 |
19 |
14,0 |
9,6 |
32,0 |
134,4 |
448,0 |
307,2 |
92,16 |
1024,0 |
196,0 |
20 |
14,0 |
9,0 |
36,0 |
126,0 |
504,0 |
324,0 |
81,0 |
1296,0 |
196,0 |
Сумма |
192 |
123,8 |
446 |
1276,3 |
4581 |
2997,4 |
837,74 |
10828,0 |
1958,0 |
Ср. знач. |
9,6 |
6,19 |
22,3 |
63,815 |
229,05 |
149,87 |
41,887 |
541,4 |
97,9 |
Найдем средние квадратические отклонения признаков:
;
;
.
Для нахождения параметров
линейного уравнения
необходимо решить следующую систему линейных уравнений относительно неизвестных параметров , , :
либо воспользоваться готовыми формулами:
; ;
.
Рассчитаем сначала парные коэффициенты корреляции:
;
;
.
Находим
;
;
.
Таким образом, получили
следующее уравнение
.
Коэффициенты и стандартизованного уравнения регрессии находятся по формулам:
;
.
Т.е. уравнение будет выглядеть следующим образом:
.
Так как стандартизованные коэффициенты регрессии можно сравнивать между собой, то можно сказать, что ввод в действие новых основных фондов оказывает большее влияние на выработку продукции, чем удельный вес рабочих высокой квалификации.
Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности:
.
Вычисляем:
; .
Т.е. увеличение только основных фондов (от своего среднего значения) или только удельного веса рабочих высокой квалификации на 1% увеличивает в среднем выработку продукции на 0,61% или 0,20% соответственно. Таким образом, подтверждается большее влияние на результат фактора , чем фактора .
; ; .
Они указывают на весьма сильную связь каждого фактора с результатом, а также высокую межфакторную зависимость (факторы и явно коллинеарны, т.к. ). При такой сильной межфакторной зависимости рекомендуется один из факторов исключить из рассмотрения.
Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.
При двух факторах частные коэффициенты корреляции рассчитываются следующим образом:
;
.
Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи. Именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.
Коэффициент множественной корреляции определить через матрицу парных коэффициентов корреляции:
,
где
– определитель матрицы парных коэффициентов корреляции;
– определитель матрицы межфакторной корреляции.
;
.
Коэффициент множественной корреляции
.
Аналогичный результат
получим при использовании
;
;
.
Коэффициент множественной корреляции показывает на весьма сильную связь всего набора факторов с результатом.
Скорректированный коэффициент множественной детерминации
определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и поэтому может сравниваться по разным моделям с разным числом факторов. Оба коэффициента указывают на весьма высокую (более ) детерминированность результата в модели факторами и .
.
В нашем случае фактическое значение -критерия Фишера:
.
Получили, что (при ), т.е. вероятность случайно получить такое значение -критерия не превышает допустимый уровень значимости . Следовательно, полученное значение не случайно, оно сформировалось под влиянием существенных факторов, т.е. подтверждается статистическая значимость всего уравнения и показателя тесноты связи .
;
.
Найдем и .
;
.
Имеем
;
.
Получили, что . Следовательно, включение в модель фактора после того, как в модель включен фактор статистически нецелесообразно: прирост факторной дисперсии за счет дополнительного признака оказывается незначительным, несущественным; фактор включать в уравнение после фактора не следует.
Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения после , то результат расчета частного -критерия для будет иным. , т.е. вероятность его случайного формирования меньше принятого стандарта . Следовательно, значение частного -критерия для дополнительно включенного фактора не случайно, является статистически значимым, надежным, достоверным: прирост факторной дисперсии за счет дополнительного фактора является существенным. Фактор должен присутствовать в уравнении, в том числе в варианте, когда он дополнительно включается после фактора .
, .
Варианты индивидуальных заданий
По 20 предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%) (смотри таблицу своего варианта).
Требуется:
Вариант 1
Номер предприятия |
Номер предприятия |
||||||
1 |
6 |
3,6 |
9 |
11 |
9 |
6,3 |
21 |
2 |
6 |
3,6 |
12 |
12 |
11 |
6,4 |
22 |
3 |
6 |
3,9 |
14 |
13 |
11 |
7 |
24 |
4 |
7 |
4,1 |
17 |
14 |
12 |
7,5 |
25 |
5 |
7 |
3,9 |
18 |
15 |
12 |
7,9 |
28 |
6 |
7 |
4,5 |
19 |
16 |
13 |
8,2 |
30 |
7 |
8 |
5,3 |
19 |
17 |
13 |
8 |
30 |
8 |
8 |
5,3 |
19 |
18 |
13 |
8,6 |
31 |
9 |
9 |
5,6 |
20 |
19 |
14 |
9,5 |
33 |
10 |
10 |
6,8 |
21 |
20 |
14 |
9 |
36 |