Автор: Пользователь скрыл имя, 27 Декабря 2011 в 12:04, реферат
Программирование в управлении можно представить как процесс распределения ресурсов. Существует ряд различных методов, основанных на идеях математического программирования, среди которых широкое применение нашел метод квадратичного программирования.
После получения точки перебрасываем на верх таблицы столько аннулировавшихся из числа , сколько окажется возможным, и с полученной таблицей производим действия п. 2). Вычисления продолжаем до получения новой стационарной точки, с которой производим действия п. 3), и т.д.
Так как алгоритм монотонный, а стационарных точек – конечное число, то после конечного числа шагов получим решение .
Применение
алгоритма квадратичного
Пример:
Задана функция . Необходимо минимизировать заданную функцию при ограничениях:
Решение:
Предварительный
шаг. Составляем таблицу:
Первый шаг.
1) Определение точки минимума. Решив систему линейных уравнений
получим точку , в которой достигается .
Находим какую-нибудь точку , например . Действительно,
2) Определение .
3)Определение . Двигаемся вдоль луча , т.е. В итоге для шага получим: .
4) Определение новой точки и новых уклонений.
Второй шаг.
1) Определение точки условного минимума функции. Производим шаг жорданова исключения в таблице с разрешающим элементом . Получим таблицу
Решив систему линейных уравнений
найдем условную экстремальную точку функции (при условии ) в новых координатах :
2) Определение .
3) Определение . Двигаемся вдоль луча , т.е. Для шага получим: .
4) Определение новой точки и новых отклонений.
Третий шаг.
1) Определение точки условного минимума функции. Производим шаг жорданова исключения в таблице с разрешающим элементом . Получим таблицу
Решив уравнение , найдем условную экстремальную точку функции (при условии ) в новых координатах :
так что - стационарная точка.
Получив стационарную точку, опускаем операции 2) и 3).
4) Определение новых уклонений.
Четвертый шаг. Опускаем операцию 1).
2) Определение . Для выхода из стационарной точки решаем следующую задачу линейного программирования: минимизировать форму
при ограничениях
Для получим: .
3) Определение . Двигаемся вдоль луча , т.е. Для шага получим: где минимизирует функцию
4) Определение новой точки и новых уклонений.
причем
Пятый шаг.
1) Определение точки условного минимума функции . Решив систему линейных уравнений
найдем
условную экстремальную точку
функции
(при условии
) в новых координатах
:
так что - стационарная точка.
Так как , то и будет являться решением, т.е. функция в точке будет принимать своё минимальное значение.