Автор: Пользователь скрыл имя, 13 Февраля 2013 в 00:03, реферат
В последнее время неуклонно возрастает значение информационного обеспечения различных медицинских технологий. Использование современных информационных технологий становится критическим фактором развития большинства отраслей знания и областей практической деятельности, поэтому разработка и внедрение информационных систем является одной из самых актуальных задач.
1. Информатизация общества в целом и медицины в частности
2. Экспертные системы
3. Самообучающиеся интеллектуальные системы
4. Примеры использования экспертных систем в медицине
5. Выводы
В эндоскопии A. Das et al. использовали
нейросетевые технологии для сортировки
больных с неварикозными
В онкоурологии P. Bassi et al. прогнозировали 5-летнюю выживаемость пациентов, перенесших радикальную цист-эктомию по поводу рака мочевого пузыря. Для этого были разработаны и сравнены ИНС и модель логистической регрессии (МЛР). Выявлено, что единственными статистически достоверными предсказателями 5-летней выживаемости оказались стадия опухоли и наличие или отсутствие прорастания в соседние органы. Положительная прогнозирующая ценность МЛР — 78,6%, ИНС – 76,2%, отрицательная прогнозирующая ценность – 73,9% и 76,5% соответственно. Индекс диагностической точности МЛР – 75,9%, ИНС – 76,4%. Таким образом, прогностическая ценность ИНС оказалась сопоставимой с МЛР, но нейросеть продемонстрировала определенные преимущества: ИНС базируется на удобном в работе, понятном программном обеспечении, позволяющем выявлять нелинейные связи между переменными, поэтому она более предпочтительна для использования в прогнозировании.
С. Stephan et al. применили ИНС
для автоматизированного
F. K. Chun et al. использовали ИНС для выявления группы риска рака предстательной железы в сравнении с МЛР. ИНС также продемонстрировала более точные прогностические возможности.
В трансплантологии G. Santori et al. применили нейросетевые технологии в прогнозировании отсроченного снижения креатинина сыворотки крови у детей после трансплантации почки. Для выявления корреляции между входными переменными и искомым результатом у пациентов, подлежащих трансплантации почки, была создана искусственная нейронная сеть, обученная на 107 клинических примерах. Были отобраны наиболее важные переменные, коррелирующие с результатом: креатинин сыворотки крови в день пересадки, диурез за первые 24 часа, эффективность гемодиализа, пол реципиента, пол донора, масса тела в первый день после пересадки, возраст. Модель была откалибрована второй выборкой пациентов (n = 41). Точность нейронной сети в обучающей, калибровочной и проверочной выборках составила 89 %; 77% и 87% соответственно. Сравнительный логистический анализ показал общую точность 79%. Чувствительность и специфичность ИНС составили 87%, тогда как метод логистической регрессии продемонстрировал худшие результаты — 37% и 94% соответственно.
В медицинской радиологии
F. Dоhler et al. использовали нейронную сеть
для классификации изображений
МРТ с целью
В неврологии A.T. Tzallas et al. применили нейросеть для прогнозирования эпилептических приступов на основе анализа электроэнцефалограмм. Прогностическая точность метода составила 98 – 100 %.
Разработанная нами нейросетевая
модель предназначена для
Кроме того, нейронная сеть позволила выделить 12 наиболее информативных показателей для прогнозирования в ранние сроки заболевания инфекционных осложнений острого панкреатита:
Технология Data Mining (DM), включающая нейросетевое моделирование, метод опорных векторов и др., применена N. Horowitz et al. в разработке диагностической анкеты для выявления гастроэзофагеальной рефлюксной болезни. Авторами были обследованы 132 пациента, на основании полученных данных построена DM-модель, позволившая отобрать наиболее важные и достоверные признаки заболевания: изжога, отрыжка кислым, положительный эффект от антацидной терапии и ухудшение самочувствия после острой, жирной пищи. Чувствительность и специфичность данного метода составили 75% и 78%.
Y.C. Lee et al. использовали DM-технологии
для прогнозирования снижения
массы тела после
Общей чертой, объединяющей все приведенные выше примеры, является отсутствие единой универсальной технологии создания нейросетевых моделей. В публикуемых разработках используются самые разнообразные архитектуры и алгоритмы функционирования экспертных систем. Это приводит к тому, что почти для каждой задачи разрабатывается своя собственная архитектура, а зачастую – некоторый уникальный алгоритм или уникальная модификация уже существующего алгоритма. С точки зрения практического применения такие экспертные системы почти не отличаются от традиционных программ принятия решений. Более того, предложены методы автоматизированного преобразования традиционных экспертных систем в нейросетевые. Их разработка требует участия специалистов по нейроинформатике, а возможности конструирования пользователем практически отсутствуют. Это делает такие системы дорогими и не очень удобными для практического применения, поэтому в публикациях авторы в основном сравнивают качество работы нейросетевых алгоритмов и традиционных систем, работающих по правилам вывода.
Таким образом, на основании анализа публикаций о применении экспертных систем в медицине можно сделать следующие выводы:
1. Медицинская нейроинформатика
как наука находится пока на
стадии накопления
2. Нейронные сети обладают
чертами, так называемого
3. Современные технические
возможности позволяют выйти
на качественно новый уровень
представления течения
Литература
1. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы. – М.: Финансы и статистика, 2006.
2. Боровиков В.П., Ивченко Г.И. Прогнозирование в системе Statistica в среде Windows. – М.: Финансы и статистика, 2006.
3. Гельман В.Я. Медицинская информатика: практикум. – СПб.: Питер, 2002.
4. Горбань А.Н. Методы нейроинформатики. — Красноярск, 1998.
5. Горбань А.Н., Дунин-Барковский В.Л., Кирдин А.Н. и др. Нейроинформатика. — Новосибирск: Наука, 1998.
6. Дюк В.А., Самойленко А.П. Data Mining: учебный курс. — СПб.: Питер, 2001.
7. Дюк В.А., Эмануэль В.Л. Информационные технологии в медико-биологических исследованиях. – СПб.: Питер, 2003.
8. Жарко В.И., Цыбин А.К., Малахова И.В. и др. // Вопросы организации и информатизации здравоохранения. — 2006.— № 4. – С. 3—7.
9. Жарко В.И. // Мед. вестник. – 2008. – № 9 (843). – С. 2.
10. Литвин А.А., Жариков О.Г., Сенчук Г.А. и др. // Проблемы здоровья и экологии. – 2007. – №2 (12). – С. 7–14.
11. Медведев В.С., Потемкин В.Г. Нейронные сети. Matlab 6. — Диалог-МИФИ, 2002.
12. Осовский С. Нейронные сети для обработки информации / пер. с польск. – М.: Финансы и статистика, 2004.
13. Чубукова И.А. Data Mining. — М.: БИНОМ. Лаборатория знаний, 2008.
Информация о работе Экспертные системы - основа информатизации медицинской деятельности