Автор: Пользователь скрыл имя, 15 Января 2011 в 21:22, контрольная работа
Эконометрика –наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов..
Этапами эконометрических исследований являются:
- постановка проблемы;
- получение данных, анализ их качества;
- спецификация модели;
- оценка параметров;
- интерпретация результатов.
ВВЕДЕНИЕ 3
1. Задача №1 5
2. Задача №2 10
3. Задача №3 13
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 18
БАШКИРСКИЙ
ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ
Эконометрика
Контрольная
работа
(ученая степень, звание, Ф.И.О.)
____________________________
(подпись)
«__» ________ 200_ г.
Уфа 2009
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ
БИБЛИОГРАФИЧЕСКИЙ
СПИСОК
Введение
Эконометрика –наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов..
Этапами эконометрических исследований являются:
- постановка проблемы;
- получение данных, анализ их качества;
- спецификация модели;
- оценка параметров;
- интерпретация результатов.
Эконометрическое исследование включает решение следующих проблем:
-
качественный анализ связей
- подбор данных;
-
спецификация формы связи
- оценка параметров модели;
-
проверка ряда гипотез о
-
анализ мультиколлинеарности
- введение фиктивных переменных;
- выявление автокорреляции, лагов;
- выявление тренда, циклической и случайной компонент;
-
проверка остатков на
- и др.
Целью данной контрольной работы является приобретение умения построения эконометрических моделей, принятие решений о спецификации и идентификации моделей, выбор метода оценки параметров модели, интерпретация результатов, получение прогнозных оценок.
Задачей
данной работы является решение поставленных
вопросов с помощью эконометрических
методов. Данная работа позволит приобрести
навыки использования различных эконометрических
методов.
Задача 1
По данным, представленным в таблице выполнить следующие расчеты:
Решение.
Рассчитаем параметры парной линейной регрессии. Для этого выберем модель уравнения, построим уравнение тренда.
Для рассмотрения зависимости урожайности от дозы внесенных удобрений используем уравнение прямой:
y = a + bx
где х – независимый признак, доза внесенных удобрений
у – урожайность,
a, b – параметры уравнения регрессии.
Для расчетов параметров уравнения составим систему уравнений
na + b∑х = ∑у
a∑х + b∑х2 = ∑ух
где n – число наблюдений, n=25
86,5a + 844,941b = 995,969
Параметры а и b можно определить по формулам
b = (39,839 – 3,46∙10,276)/ (33,798-3,462) = 0,1960
а = 10,276 – 0,196∙3,46 = 9,598
ỹ = 9,598 + 0,196х
Коэффициент регрессии b= 0,196 ц/га показывает, насколько в среднем повысится урожайность при увеличении дозы внесения удобрений на 1 кг.
Средняя ошибка аппроксимации
Ошибка аппроксимации 19,78 % > 12% – модель ненадежна и статистически незначима.
Оценим тесноту связи с помощью показателей корреляции и детерминации.
Тесноту связи показывает коэффициент корреляции:
δx - показывает, что в среднем фактор Х меняется в пределах
δу - показывает, что в среднем фактор Y меняется в пределах
rxy
= 0,401, 0,3≤0,401≤0,5 – связь слабая
Коэффициент детерминации R = rxy2 ∙100% = 0,4012∙100% = 16,08.
y зависит от выбранного x на 16,08%, на оставшиеся 100-16,08% y зависит от других факторов.
Оценим статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.
При
α = 0,05, κ1 = n-1, κ2 = n-2 =25-2 =23
Fтабл. = 2,00,
FФиш. = 4,414 > Fтабл. = 2,00 – модель
значима и надежна
Рассчитаем
прогнозное значение результата с вероятностью
0,95% при повышении дозы внесения
удобрений от своего среднего уровня
и определим доверительный
Найдем точечный прогноз для хпрогноз = 1,2∙х , хр = 1,2 ∙3,46 = 4,152
ỹ = a+bx, ỹр = 9,598 + 0,196∙ хр = 9,598 + 0,196∙4,152 = 10,412
Найдем среднюю ошибку прогнозного значения
Fтабл. Стьюдента для α = 0,05, df = n-2 = 25-2 = 23
tтабл.=2,0687,
∆ур = tтабл∙станд.ошибка = 2,0687∙2,188 = 4,526
Доверительный интервал прогноза по урожайности
γур = yp ± ∆ур = 10,412 ±
4,526, от 5,886 до 14,938
Таблица 1. Исходные данные для задачи 1
№ | Внесено мин.удобрений,
ц |
Урожайность,
ц/га |
Х2 | у∙х | У2 | Урожайность расчетная,
Ỹ |
(Y-Ỹ) | (Y-Ỹ)/100 | (Y-Ỹ)2 | (Х-¯Х)2 |
1 | 13,9 | 9,4 | 193,21 | 130,66 | 88,36 | 12,322 | -2,922 | 31,085 | 8,538 | 108,994 |
2 | 8,8 | 15 | 77,44 | 132 | 225 | 11,323 | 3,677 | 100,245 | 13,52 | 28,516 |
3 | 4 | 8,2 | 16 | 32,8 | 67,24 | 10,382 | -2,182 | 26,610 | 4,761 | 0,292 |
4 | 0,01 | 8,2 | 0,0001 | 0,082 | 67,24 | 9,6 | -1,4 | 17,073 | 1,96 | 11,903 |
5 | 4,2 | 13,7 | 17,64 | 57,54 | 187,69 | 10,421 | 3,279 | 23,934 | 10,752 | 0,548 |
6 | 0,7 | 9,2 | 0,49 | 6,44 | 84,64 | 9,735 | -0,535 | 5,815 | 0,286 | 7,618 |
7 | 6,7 | 12,4 | 44,89 | 83,08 | 153,76 | 10,911 | 1,489 | 12,008 | 2,217 | 10,498 |
8 | 15,9 | 14 | 252,81 | 222,6 | 196 | 12,714 | 1,286 | 9,186 | 1,654 | 154,754 |
9 | 1,9 | 8,6 | 3,61 | 16,34 | 73,96 | 9,97 | -1,37 | 15,930 | 1,877 | 2,434 |
10 | 1,9 | 14,7 | 3,61 | 27,93 | 216,09 | 9,97 | 4,73 | 32,177 | 22,373 | 2,434 |
11 | 0,01 | 6,3 | 0,0001 | 0,063 | 39,69 | 9,6 | -3,3 | 52,381 | 10,89 | 11,903 |
12 | 0,01 | 8,5 | 0,0001 | 0,085 | 72,25 | 9,6 | -1,1 | 12,941 | 1,21 | 11,903 |
13 | 0,01 | 8,8 | 0,0001 | 0,088 | 77,44 | 9,6 | -0,8 | 9,091 | 0,64 | 11,903 |
14 | 1,2 | 10,9 | 1,44 | 13,08 | 118,81 | 9,833 | 1,067 | 9,789 | 1,138 | 5,108 |
15 | 0,01 | 9,2 | 0,0001 | 0,092 | 84,64 | 9,6 | -0,4 | 4,348 | 0,16 | 11,903 |
16 | 0,01 | 13,4 | 0,0001 | 0,134 | 179,56 | 9,6 | 3,8 | 28,358 | 14,44 | 11,903 |
17 | 3,7 | 10,8 | 13,69 | 39,69 | 116,64 | 10,323 | 0,477 | 4,417 | 0,288 | 0,058 |
18 | 0,01 | 7,9 | 0,0001 | 0,079 | 62,41 | 9,6 | -1,7 | 21,519 | 2,89 | 11,903 |
19 | 0,01 | 9,1 | 0,0001 | 0,091 | 82,81 | 9,6 | -0,5 | 5,495 | 0,25 | 11,903 |
20 | 1,6 | 9,2 | 2,56 | 14,72 | 84,64 | 9,912 | -0,712 | 7,739 | 0,507 | 3,460 |
21 | 2,5 | 10,3 | 6,25 | 25,75 | 106,09 | 10,088 | 0,212 | 2,058 | 0,045 | 0,922 |
22 | 0,01 | 11,1 | 0,0001 | 0,111 | 123,21 | 9,6 | 1,5 | 13,514 | 2,25 | 11,903 |
23 | 6,3 | 9,5 | 39,69 | 59,85 | 90,25 | 10,833 | -1,333 | 14,032 | 1,777 | 8,066 |
24 | 0,01 | 8,4 | 0,0001 | 0,084 | 70,56 | 9,6 | -1,2 | 14,286 | 1,44 | 11,903 |
25 | 13,1 | 10,1 | 171,61 | 132,31 | 102,01 | 12,166 | -2,066 | 20,455 | 4,268 | 92,930 |
Итого | 86,5 | 256,9 | 844,941 | 995,969 | 2770,99 | 256,903 | 0,003 | 494,486 | 110,071 | 545,662 |
Среднее значение | 3,46 | 10,276 | 33,798 | 39,839 | 110,84 | 21,826 |
Задача 2
По
данным представленным в таблице 3 изучается
зависимость бонитировочного
С помощью ППП MS Excel:
1. Построить матрицу парных коэффициентов корреляции. Установить, какие факторы мультиколлинеарны.
2. Построить
уравнение множественной
3. Оценить статистическую
значимость уравнения
4. Отобрать информативные
факторы. Построить уравнение
регрессии со статитически
5. Оценить полученные
результаты, выводы оформить в
аналитической записке.
В ППП MS Excel построим матрицу парных коэффициентов корреляции (сделать вставку из ексель зад.2).
По данным матрицы, определим мультиколлинеарность факторов, когда более чем два фактора связаны между собой линейной зависимостью. Из полученной матрицы видно, что зависимости между тремя данными факторами нет. Так rx2x1= -0,0732, rx3x1= 0,0427, rx3x2= -0,0886. Из всех трех факторов наиболее тесно связан с результатом фактор Х1 – доза внесения удобрения на посевную площадь, ryx1= 0,4004, затем фактор Х2 – коэффициент износа основных средств, , ryx2= 0,3858 и очень слабая зависимость от 3-го фактора Х3 , ryx3= 0,0264.
Построим
уравнение множественной
y = a + b1∙x1 + b2∙x2 + b3∙x3+ ξ
С помощью ППП MS Excel найдем значения а и b:
b = 13,9661, а1 = 0,1837, а2= - 0,0917, а3 = 0,0022
Итак,
уравнение множественной
y = 13,9661 + 0,1837х1 - 0,0917x2 + 0,0022x3
Оценим
статистическую значимость уравнения
регрессии и его параметров с
помощью критериев Фишера и Стьюдента.
Значимость уравнения множественной
регрессии оценивается с
где R2 – коэффициент множественной регрессии,
m – число параметров при переменных х,
n – число наблюдений.
R = 0,5369
Fтаб= при 5%-ном уровне значимости для числа степеней свободы 1 и 21 равно 4,32.
Fфакт < Fтаб – модель незначима и ненадежна.
Для того чтобы модель была надежна уберем из нее фактор х3, так как он меньше всего коррелирует с у. Получим уравнение:
y = 14,1136 + 0,1837х1 - 0,0917x2
Значимость
уравнения множественной
Итак, составив
уравнение множественной
Задача 3
По учебнику задача №37
1.Найти
коэффициенты автокорреляции
2.Построить авторегрессионную функцию.
3.
Рассчитать прогнозные
В таблице 4 приводятся сведения об уровне среднегодовых цен на говядину из США на рынках Нью-Йорка, амер.центы за фунт.
Данная задача относится к типу задач на моделирование временных рядов. Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно разделить на три группы:
- факторы, формирующие тенденцию ряда;
- факторы,
формирующие циклические
- случайные факторы.
Нанесем
значения нашей задачи на график (рисунок
1).
Из структуры графика видно, что основной компонентой временного ряда является возрастающая компонента.
Найдем коэффициенты автокорреляции разного порядка и выберем величину лага.
Таблица Расчет коэффициента автокорреляции первого порядка для временного ряда расходов на конечное потребление
t | yt | Yt-1 | yt-y1 | Yt-1-y2 | (yt-y1)( Yt-1-y2) | (Yt-1-y1)2 | (Yt-1-y2)2 |
1 | 41 | - | - | - | - | - | - |
2 | 42 | 41 | -36,07 | -35,41 | 1277,24 | 1301,04 | 1253,87 |
3 | 49 | 42 | -29,07 | -34,41 | 1000,29 | 845,06 | 1184,05 |
4 | 64 | 49 | -14,07 | -27,41 | 385,66 | 197,9 | 751,31 |
5 | 53 | 64 | -25,07 | -12,41 | 311,12 | 628,5 | 154 |
6 | 44 | 53 | -34,07 | -23,41 | 797,58 | 1160,76 | 548,03 |
7 | 52 | 44 | -26,07 | -32,41 | 844,93 | 679,6 | 1050,41 |
8 | 51 | 52 | -27,07 | -24,41 | 660,78 | 732,8 | 595,85 |
9 | 71 | 51 | -7,07 | -25,41 | 179,65 | 50 | 645,67 |
10 | 92 | 71 | 13,93 | -5,41 | -75,36 | 194,04 | 29,27 |
11 | 87 | 92 | 8,93 | 15,59 | 139,22 | 79,75 | 243,05 |
12 | 86 | 87 | 7,93 | 10,59 | 83,98 | 62,89 | 112,15 |
13 | 99 | 86 | 20,93 | 9,59 | 200,72 | 438,06 | 91,97 |
14 | 96 | 99 | 17,93 | 22,59 | 359,86 | 321,48 | 510,31 |
15 | 97 | 96 | 18,93 | 19,59 | 370,84 | 358,34 | 383,77 |
16 | 89 | 97 | 10,93 | 20,59 | 225,05 | 119,46 | 423,95 |
17 | 77 | 89 | -1,07 | 12,59 | -13,47 | 1,14 | 383,77 |
18 | 81 | 77 | 2,93 | 0,59 | 1,73 | 8,58 | 0,35 |
19 | 82 | 81 | 3,93 | 4,59 | 18,04 | 15,44 | 21,07 |
20 | 87 | 82 | 8,93 | 5,59 | 49,92 | 79,74 | 31,25 |
21 | 94 | 87 | 15,93 | 10,59 | 168,7 | 253,76 | 112,15 |
22 | 90 | 94 | 11,93 | 17,59 | 209,85 | 142,32 | 309,41 |
23 | 90 | 90 | 11,93 | 13,59 | 162,13 | 142,32 | 184,69 |
24 | 93 | 90 | 14,93 | 13,59 | 202,9 | 222,9 | 184,69 |
25 | 87 | 93 | 15,93 | 16,59 | 264,28 | 253,76 | 275,23 |
26 | 84 | 87 | 5,93 | 10,59 | 62,8 | 35,16 | 112,15 |
27 | 85 | 84 | 6,93 | 7,59 | 52,6 | 48,02 | 57,61 |
28 | 86 | 85 | 7,93 | 8,59 | 68,12 | 62,88 | 73,79 |
2149 | 2063 | 9,25 | 11,02 | 8016,65 | 8435,7 | 9723,82 |
y1 = ∑ уt
/ (n-1) = (42+49+64+53+44+52+51+71+92+
у2 = ∑ уt-1
/ (n-1) = (41+42+49+64+53+44+52+51+71+
r1=
8016.65/ √(8435,7 х 9723,82) = 0,8951
Таблица Расчет коэффициента автокорреляции второго порядка для временного ряда расходов на конечное потребление
t | yt | Yt-2 | yt-y2 | Yt-2-y2 | (yt-y2)( Yt-2-y2) | (Yt-2-y2)2 | (Yt-2-y2)2 |
1 | 41 | - | - | - | - | - | - |
2 | 42 | - | - | - | - | - | - |
3 | 49 | 41 | -33,65 | -35,08 | 1180,44 | 1132,32 | 1230.60 |
4 | 64 | 42 | -18,65 | -34,08 | 635,6 | 347,82 | 1161.45 |
5 | 53 | 49 | -29,65 | -27,08 | 802,92 | 879,12 | 733.33 |
6 | 44 | 64 | -38,65 | -12,08 | 466,89 | 1493,82 | 145,93 |
7 | 52 | 53 | -30,65 | -23,08 | 707,4 | 939,42 | 532,69 |
8 | 51 | 44 | -31,65 | -32,08 | 1015,33 | 1001,72 | 1029,13 |
9 | 71 | 52 | -11,65 | -24,08 | 280,53 | 135,72 | 579,85 |
10 | 92 | 51 | 9,35 | -25,08 | -234,5 | 87,42 | 629,01 |
11 | 87 | 71 | 4,35 | -5,08 | -22,1 | 18,92 | 25,81 |
12 | 86 | 92 | 3,35 | 15,92 | 53,33 | 11,22 | 253,45 |
13 | 99 | 87 | 16,35 | 10,92 | 178,54 | 267,32 | 119,25 |
14 | 96 | 86 | 13,35 | 9,92 | 132,43 | 178,22 | 98,41 |
15 | 97 | 99 | 14,35 | 22,92 | 328,9 | 205,92 | 525,33 |
16 | 89 | 96 | 6,35 | 19,92 | 126,5 | 40,32 | 396,81 |
17 | 77 | 97 | -5,65 | 20,92 | -118,2 | 31,92 | 437,65 |
18 | 81 | 89 | -1,65 | 12,92 | -21,32 | 2,72 | 166,93 |
19 | 82 | 77 | -0,65 | 0,92 | -0,6 | 0,42 | 085 |
20 | 87 | 81 | 4,35 | 4,92 | 21,4 | 18,92 | 24,21 |
21 | 94 | 82 | 11,35 | 5,92 | 67,2 | 128,82 | 35,05 |
22 | 90 | 87 | 7,35 | 10,92 | 80,26 | 54,02 | 119,25 |
23 | 90 | 94 | 7,35 | 17,92 | 131,71 | 54,02 | 321,13 |
24 | 93 | 90 | 10,35 | 13,92 | 144,07 | 107,12 | 193,77 |
25 | 87 | 90 | 4,35 | 13,92 | 60,55 | 18,92 | 193,77 |
26 | 84 | 93 | 1,35 | 16,92 | 22,84 | 1,82 | 286,29 |
27 | 85 | 87 | 2,35 | 10,92 | 25,66 | 5,52 | 119,25 |
28 | 86 | 84 | 3,35 | 7,92 | 26,53 | 11,22 | 62,73 |
2149 | 1978 | 6092,31 | 7174,72 | 9422,38 |
y1 = ∑ уt
/ (n-1) = (42+49+64+53+44+52+51+71+92+
у2 = ∑ уt-1
/ (n-1) = (41+42+49+64+53+44+52+51+71+
r2
= 6092,31/√ (7174,72 х 9422,38) = 0,7410
Итак, коэффициент корреляции первого порядка r1 = 0,8961
коэффициент корреляции второго порядка r2 = 0,7550
Автоматически в ППП Exel рассчитаем коэффициент корреляции третьего порядка r3 = 0,6546, и коэффициент корреляции четвертого порядка r4 = 0,5461
Как
видно из полученных данных, наиболее
тесная зависимость между
Рассчитав коэффициенты автокорреляции 1, 2, 3, 4-го порядков получили автокорреляционную функцию этого ряда. Анализ значений автокорреляционной функции позволяет сделать выводы о наличии в изучаемом временном ряде тенденции.
Для того, чтобы рассчитать прогноз цен на три года вперед, составим уравнение тренда для временного ряда показателей среднегодовых цен на говядину.
У = а + bt,
Где У – выравненное значение среднегодовой цены,
b, t - неизвестные параметры,
а – начальный уровень временного ряда в момент времени t=0.
b – ежегодный прирост (снижение) цены на говядину,
t – значение дат.
Для
определения неизвестных
na + b∑t = ∑Y
a∑t + b∑t2 = ∑Yxt
Для
упрощения системы
Поскольку ∑t = 0, система уравнений примет вид:
тогда
,
a=(41+42+49+64+53+44+52+51+71+
b = 12920/ 1638 = 7,8877
y = 76,75 + 7,89t
Т.е. уравнение линейного тренда имеет вид y = 76,75 + 7,89t. Это означает, что средняя фактическая и выровненная цена, отнесенная к середине периода, т.е. к 1983 г. равна 76,75 амер.центов за фунт, а среднегодовой прирост цены составляет 7,89 центов за фунт.
Таблица 3. Расчет параметров уравнения тренда
№
года |
Годы | Среднегодовая цена на говядину, У | Условное обозначение
периодов,
T |
t2 | Y x t |
1 | 1970 | 41 | -13 | 169 | 533 |
2 | 1971 | 42 | -12 | 144 | 504 |
3 | 1972 | 49 | -11 | 121 | 539 |
4 | 1973 | 64 | -10 | 100 | 640 |
5 | 1974 | 53 | -9 | 81 | 477 |
6 | 1975 | 44 | -8 | 64 | 352 |
7 | 1976 | 52 | -7 | 49 | 364 |
8 | 1977 | 51 | -6 | 36 | 306 |
9 | 1978 | 71 | -5 | 25 | 355 |
10 | 1979 | 92 | -4 | 16 | 368 |
11 | 1980 | 87 | -3 | 9 | 261 |
12 | 1981 | 86 | -2 | 4 | 172 |
13 | 1982 | 99 | -1 | 1 | 99 |
14 | 1983 | 96 | 0 | 0 | 0 |
15 | 1984 | 97 | 1 | 1 | 97 |
16 | 1985 | 89 | 2 | 4 | 178 |
17 | 1986 | 77 | 3 | 9 | 231 |
18 | 1987 | 81 | 4 | 16 | 324 |
19 | 1988 | 82 | 5 | 25 | 410 |
20 | 1989 | 87 | 6 | 36 | 522 |
21 | 1990 | 94 | 7 | 49 | 658 |
22 | 1991 | 90 | 8 | 64 | 720 |
23 | 1992 | 90 | 9 | 81 | 810 |
24 | 1993 | 93 | 10 | 100 | 930 |
25 | 1994 | 87 | 11 | 121 | 957 |
26 | 1995 | 84 | 12 | 144 | 1008 |
27 | 1996 | 85 | 13 | 169 | 1105 |
Итого | 2063 | 0 | 1638 | 12920 |
По полученному уравнению (функции) можно составить прогнозные оценки: точечные прогнозы и доверительные интервалы прогноза.
Номер прогнозируемого периода будем отсчитывать от 1983 года, когда t=0, тогда t1999 = 16 (1999г.), тогда точечный прогноз удоя молока на 1 гол. на 2000 год составит
У31 = 76,75 + 7,89 х 16 = 202,99
Таким
образом, по уравнению тренда стоимость
1 фунта говядины в 1999 г. составила 202,99
американских центов.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК