Эконометрические модели

Автор: Пользователь скрыл имя, 11 Марта 2012 в 23:30, курсовая работа

Описание работы

Цель курсовой работы – рассмотреть системы эконометрических уравнений (большие эконометрические модели), их применение в эконометрике.
В связи с поставленной целью, были выделены задачи данной курсовой работы:
• Понятие больших эконометрических моделей;
• Сущность проблемы идентифицируемости;
• Особенности системы линейных одновременных эконометрических уравнений;
• Методы наименьших квадратов;
• Применение эконометрических уравнений.

Содержание

ВВЕДЕНИЕ………………………………………………………………... 3
ГЛАВА 1. Эконометрические модели .……………………………....….. 5
1.1 Основные понятия и особенности эконометрических моделей …………………………………………………………. 5
1.2 Структурная и приведенная формы моделей …………….. 7
1.3 Проблема идентификации……………………………...…... 9
1.4 Оценивание параметров структурной модели……………. 10
1.4.1 КМНК………………………………………………....... 11
1.4.2 ДМНК………………………………………………....... 12
1.5 Большие эконометрические модели………………………. 13
1.5.1 Математические основы больших эконометрических моделей…………………………………….................................. 14
1.5.2. Исторические примеры больших эконометрических моделей………………………………………………………….. 22
ГЛАВА 2. Эконометрическая модель национальной экономики Турции …………………………………………………………………….. 25
2.1 План работы …………………………………………….….. 25
2.2 Идентификация модели…………………………………….. 26
2.3 Прогнозирование эндогенных переменных………………. 30
2.4 Выводы……………………………………………………… 32
ЗАКЛЮЧЕНИЕ…………………………………………………………… 33
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ……………………… 34
ПРИЛОЖЕНИЯ…………………………………………………………… 35

Работа содержит 1 файл

экон мод.doc

— 520.50 Кб (Скачать)

Динамическая модель может и не содержать учет тенденции, но лаговые переменные в ней обязательны. Динамическая мо­дель Кейнса представлена следующими тремя уравнениями:

Ct = a + b1Y1 + b2Yt-1 +e1,

Yt = Ct + Gt + It + Lt,

Pt = Yt + Zt.

Yt, -- имеющийся в распоряжении доход в период времени t;

Ct, -- частное потребление в период времени t;

Pt  -- валовой национальный продукт (ВНП) в период времени t.

Кроме того, модель содержит пять предопределенных переменных:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Yt-1 - доход предыдущего года;

Ct, -- частное потребление;

It - валовые капиталовложения;

Lt  - изменение складских запасов;

Zt - сальдо платежного баланса.

Случайная переменная e1 характеризует ошибки в первом уравнении ввиду его статистического характера. Параметр а отра­жает влияние других не учитываемых в данном уравнении факто­ров потребления (например, цен). Первое уравнение данной системы является сверхидентифицируемым, а второе и третье — определениями.

Если в модели Кейнса доход рассматривается как лаговая пе­ременная, то в других исследованиях функции потребления в ви­де лаговой переменной используется потребление предыдущего года, т. е. считается, что потребление текущего года зависит не только от дохода, но и от достигнутого в предыдущий период уровня потребления.

Примером динамической модели экономики, учитывающей для каждой эндогенной переменной лаговые переменные соот­ветствующего экономического содержания, может служить мо­дель открытой экономики с экономической активностью со стороны государства.

Ct = a0 + a1Yt + a2Ct-1 +e1,

It = b0 + b1Yt + b2Ut-1 + e2,

IMt = k0 + k1Yt + k2IMt-1 + e3,

Yt = Ct + It + Gt – IMt.

В этой модели четыре эндогенные переменные:

Ct — личное потребление в период времени t;

It — частные чистые инвестиции в отрасли экономики в пери­од времени t;

IMt —импорт в период времени t;

Yt — национальный доход за период времени t.

Все переменные приведены в постоянных ценах.

Предопределенными переменными в модели являются следу­ющие три переменные:

Ct-1 — личное потребление за предыдущий период;

Ut-1 — доход личных домохозяйств от предпринимательской деятельности за предыдущий период и доход от имущества плюс нераспределенная прибыль предприятий до налогообложения;

IMt-1 — импорт за предыдущий период времени t-1.

В качестве экзогенной переменной в модели рассматривается переменная Gt — общественное потребление плюс государствен­ные чистые капиталовложения в экономику страны плюс измене­ние запасов минус косвенные налоги плюс, дотации плюс экспорт.

Первые три уравнения системы являются сверхидентифицируемыми, а четвертое представляет собой балансовое тождество.

Система одновременных уравнений нашла применение в ис­следованиях спроса и предложения. Линейная модель спроса и предложения имеет вид:

Qd = a0 + a1P + e1,

Qs = b0 + b1P +e2,

Qd = Qs,

где Qd — спрашиваемое количество благ (объем спроса);

Р - цена;

Qs - предлагаемое количество благ (объем предложения).

В этой системе три эндогенные переменные Qd, Qs и P. При этом если Qd  и Qs представляют собой эндогенные переменные исходя из структуры самой системы (они расположены в левой части), то Р является эндогенной по экономическому содержа­нию (цена зависит от предлагаемого и испрашиваемого количе­ства благ), а также в результате наличия тождества Qd = Qs.

Рассматриваемая модель спроса и предложения не содержит экзогенной переменной. Однако для того, чтобы модель имела статистическое решение и можно было убедиться в ее справедливости, в модель вводятся экзогенные переменные.

Одним из вариантов модели спроса и предложения является модель вида

Qd = a0 + a1P + a2R + e1,

Qs = b0 + b1P + b2W + e2,

Qd = Qs,

где R - доход на душу населения;

W — климатические условия (предположим, что речь идет о спросе и предложении зерна).

Переменные R и W экзогенные. Введя их в модель, получим идентифицируемую структурную модель, оценки параметров ко­торой могут быть даны с помощью КМНК.

Широкий класс моделей в эконометрике представляют про­изводственные функции:

Р = f ( x1,x2,..,xn), где       

Р — объем выпуска (уровень производства);

x1,x2,..,xn - факторы производства (труд, капитал и др.).

Однако реализация такого рода моделей, как правило, не свя­зана с системой одновременных уравнений. Производственная функция в упрощенном виде может быть включена в систему од­новременных уравнений. Так, в 1962 г. Б. Хохенбалкен и Г. Тинтнер предложили следующую модель экономики для каждой из одиннадцати стран — членов Организации экономического сод­ружества:

 

logX = a2 + b2 logD,

dx/dD = W/p,

Y =C + K,

X = Y/P.

Здесь эндогенными переменными являются:

С - величина личного потребления в текущих ценах;

Y- ВНП в текущих ценах;

X- ВНП в постоянных ценах;

Р - индекс цен;

D — общая занятость.

В качестве экзогенных переменных приняты:

N— численность населения;

W- средняя годовая заработная плата работника;

K — государственное потребление плюс инвестиции и внеш­неторговое сальдо.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

В системе имеются только два структурных уравнения -функция потребления (первое уравнение) и производственная функция (второе уравнение). Остальные составляющие модели представляют собой априорно разработанную функцию спроса на труд (третье уравнение) и два тождества, относящиеся к ВНП.

Параметры функции потребления оцениваются с помощью КМНК с учетом тождества Y = С + К, а параметры производст­венной функции — при комбинации ее с функцией спроса на труд.

Как уже отмечалось, не все эконометрические модели имеют вид системы одновременных уравнений. Так, широкий класс функций спроса на ряд потребительских товаров часто представ­ляет собой рекурсивную систему, в которой с уравнениями мож­но работать последовательно и проблемы одновременного оце­нивания не возникают. В этом плане система одновременных уравнений — лишь один из возможных вариантов построения экономических моделей.[6]

 

1.5.2. Исторические примеры больших эконометрических моделей.

Первой версией модели LSEM в международном масштабе был Проект LINK, созданный Л.Клейном и его ассистентами из Пенсильванского университета в конце 60-х годов. LINK состоит из 79 субмоделей, каждая из которых описывает страну или отдельный географический регион, а все вместе они охватывают весь мир. В свою очередь, каждая субмодель является широкомасштабной моделью.

Проект LINK, вероятно, наиболее широко известен, но это только одна из моделей подобного рода. Перечислим несколько других подобных моделей, которые были разработаны государственными агентствами во всем мире: ЕРА — мировая эконометрическая модель, созданная Японским агентством экономического планирования, содержащая модели для восьми стран: Австралии, Канады, Франции, Италии, Японии, Великобритании, Соединенных Штатов и Западной Германии, и шесть моделей для остальных регионов мира; EEC — модель Европейской экономической комиссии, содержащая четыре субмодели: для Соединенных Штатов, Японии, Европы и остального мира; MINIMOD — сравнительно небольшая модель Международного валютного фонда, состоящая , всего из двух субмоделей: для США и остальных стран, входящих в Организацию экономического сотрудничества и развития (ОЭСР), созданная совместными усилиями Ричарда Хааса и Пола Массона.

Широкомасштабные модели были также разработаны частными фирмами, которые занимались экономическими консультациями и прогнозами. В числе этих моделей можно отметить: DRI — модель объединенных данных о ресурсах, включающая субмодели для Канады, Японии, Соединенных Штатов и региональную модель для Европы; наконец, WHARTON — модель Вартоновской эконометрической ассоциации прогнозов, включающая 23 субмодели для каждой из стран ОЭСР, одну для Южной Африки и шесть региональных моделей для остальных стран мира. Наконец, ученые из университетов разработали собственные модели. Например, модель MSG — глобальная модель Мак-Кибина—Сакса, разработанная Варвиком Мак-Кибином и Джеффри Саксом из Гарвардского университета. Она состоит из пяти субмоделей, представляющих Японию, США, блок стран ОЭСР, страны ОПЕК и другие развивающиеся страны.

Недавно Ральф Брайант, Джон Хелливелл и Питер Хупер смоделировали различные виды экономической политики в США, основываясь на хорошо известных моделях LSEM. Эти модели обеспечивают возможность получения "усредненных" результатов, нивелируя тем самым крайности частных моделей. Основываясь на модели IS-LM, можно предсказать сокращение выпуска, цен и процентной ставки. Брайант, Хелливелл и Хупер смоделировали ежегодное сокращение государственных расходов на 1% ВВП в течение 6 лет. В соответствии с этим за первый год выпуск упал немногим более чем на 1%, во втором году несколько увеличился, не достигнув, однако, первоначального  уровня. Цены в первом году снизились незначительно (менее чем на 0,1%), а краткосрочная ставка процента упала на 1,09.

Другим политическим решением, рассмотренным авторами, было увеличение предложения денег в США на 1% в течение 6 лет. Теоретическая модель предсказывает понижение процентных ставок, рост выпуска и цен. В имитационной модели ставки процента в США действительно сильно упали в первом году и постепенно увеличивались в дальнейшем. Выпуск увеличился на 0,25% в первом году, еще немного во втором, а затем начал падать, возвращаясь к исходному уровню.[8]

Таким образом, количественные результаты, полученные на базе данной теоретической модели, совпадают с результатами, которые дают большие эконометрические модели. Конечно же, реальный мир очень сложен, и это многообразие может быть отражено только большими, а не простыми эконометрическими моделями. Например, мы не можем точно учесть результаты многообразных видов политики и лагов. Но ведь главное требование к простой модели — отражать наиболее важные аспекты действительности и давать реальные прогнозы. Модель IS-LM в сочетании с моделью QS/QP удовлетворяет этим требованиям для многих случаев краткосрочных изменений в политике.[8]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 2. Эконометрическая модель национальной экономики Турции.

 

2.1 План работы.

План работы следующий:

1.                     Собрать исходные данные в виде временных рядов с 1970 года по 2007 год следующих макроэкономических показателей: валовой внутренний продукт, непроизводственное потребление, государственные расходы, инвестиции.

2.                     Идентифицировать по косвенному или двухшаговому методу наименьших квадратов, следующую экономическую модель:

Информация о работе Эконометрические модели