Эконометрические методы проведения экспертных исследований и анализа оценок экспертов

Автор: Пользователь скрыл имя, 20 Декабря 2012 в 12:35, реферат

Описание работы

Методы экспертных оценок - это методы организации работы со спе-циалистами-экспертами и анализа мнений экспертов. Эти мнения обычно выражены частично в количественной, частично в качественной форме. Экс-пертные исследования проводят с целью подготовки информации для приня-тия решений ЛПР (лицом, принимающим решения).

Содержание

ПРИМЕРЫ ПРОЦЕДУР ЭКСПЕРТНЫХ ОЦЕНОК 3
ОСНОВНЫЕ СТАДИИ ЭКСПЕРТНОГО ОПРОСА 8
ПОДБОР ЭКСПЕРТОВ 11
О РАЗРАБОТКЕ РЕГЛАМЕНТА ПРОВЕДЕНИЯ СБОРА И АНАЛИЗА ЭКСПЕРТНЫХ МНЕНИЙ 14
МЕТОДЫ СРЕДНИХ БАЛЛОВ 24
МАТЕМАТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА ЭКСПЕРТНЫХ ОЦЕНОК 36
ЛИТЕРАТУРА 46

Работа содержит 1 файл

Эконометрические методы проведения экспертных исследований и анализа оценок экспертов.doc

— 235.50 Кб (Скачать)

D (Ai,A) = D (A1,A) + D (A2,A) + D (A3,A) +…+ D (Aр,A).

Кроме медианы Кемени, используют среднее по Кемени, в котором вместо D (Ai,A) стоит D2 (Ai,A).

Медиана Кемени - частный случай определения  эмпирического среднего в пространствах  нечисловой природы. Для нее справедлив закон больших чисел, т.е. эмпирическое среднее приближается при росте  числа составляющих (т.е. р - числа слагаемых в сумме), к теоретическому среднему:

Arg min D (Ai,A) Arg min М D (A1, A).

Здесь М - символ математического ожидания. Предполагается, что ответы р экспертов  А1, А2, А3,…, А р есть основания рассматривать как независимые одинаково распределенные случайные элементы (т.е. как случайную выборку) в соответствующем пространстве произвольной природы, например, в пространстве упорядочений или отношений эквивалентности. Систематически эмпирические и теоретические средние и соответствующие законы больших чисел рассмотрены в соответствующей главе настоящей книги.

Законы больших чисел показывают, во-первых, что медиана Кемени обладает устойчивостью по отношению к  незначительному изменению состава  экспертной комиссии; во-вторых, при увеличении числа экспертов она приближается к некоторому пределу. Его естественно рассматривать как истинное мнение экспертов, от которого каждый из них несколько отклонялся по случайным причинам.

Рассматриваемый здесь закон больших чисел является обобщением известного в статистике "классического" закона больших чисел. Он основан на иной математической базе - теории оптимизации, в то время как "классический" закон больших чисел использует суммирование. Упорядочения и другие бинарные отношения нельзя складывать, поэтому приходится применять иную математику. Рассмотрим пример вычисления медианы Кемени.

Пример. Пусть дана квадратная матрица (порядка 9) попарных расстояний для  множества бинарных отношений из 9 элементов А1, А2, А3,..., А9 (см. табл.3). Необходимо найти в этом множестве медиану для множества из 5 элементов {А2, А4, А5, А8, А9}.

Табл.3. Матрица попарных расстояний

0

2

13

1

7

4

10

3

11

2

0

5

6

1

3

2

5

1

13

5

0

2

2

7

6

5

7

1

6

2

0

5

4

3

8

8

7

1

2

5

0

10

1

3

7

4

3

7

4

10

0

2

1

5

10

2

6

3

1

2

0

6

3

3

5

5

8

3

1

6

0

9

11

1

7

8

7

5

3

9

0


 

В соответствии с определением медианы  Кемени следует ввести в рассмотрение функцию

С(А) = ∑ D(Ai,A) = D(A2,A) +D(A4,A) +D(A5,A) +D(A8,A) +D(A9,A),

рассчитать ее значения для всех А1, А2, А3,..., А9 и выбрать наименьшее. Проведем расчеты:

С(А1) = D (A2,A1) + D (A4,A1) + D (A5,A1) +D (A8,A1) + D (A9,A1) =

= 2 + 1 +7 +3 +11 = 24,

С(А2) = D (A2,A2) + D (A4,A2) + D (A5,A2) +D (A8,A2) + D (A9,A2) =

= 0 + 6 + 1 + 5 + 1 = 13,

С(А3) = D (A2,A3) + D (A4,A3) + D (A5,A3) +D (A8,A3) + D (A9,A3) =

= 5 + 2 + 2 + 5 +7 = 21,

С(А4) = D (A2,A4) + D (A4,A4) + D (A5,A4) +D (A8,A4) + D (A9,A4) =

= 6 + 0 + 5 + 8 + 8 = 27,

С(А5) = D (A2,A5) + D (A4,A5) + D (A5,A5) +D (A8,A5) + D (A9,A5) =

= 1 + 5 + 0 +3 + 7 = 16,

С(А6) = D (A2,A6) + D (A4,A6) + D (A5,A6) +D (A8,A6) + D (A9,A6) =

= 3 + 4 + 10 + 1 + 5 = 23,

С(А7) = D (A2,A7) + D (A4,A7) + D (A5,A7) +D (A8,A7) + D (A9,A7) =

= 2 + 3 +1 + 6 + 3 = 15,

С(А8) = D (A2,A8) + D (A4,A8) + D (A5,A8) +D (A8,A8) + D (A9,A8) =

= 5 + 8 + 3 + 0 +9 = 25,

С(А9) = D (A2,A9) + D (A4,A9) + D (A5,A9) +D (A8,A9) + D (A9,A9) =

= 1 + 8 + 7 + 9 + 0 = 25.

Из всех вычисленных сумм наименьшая равна 13, и достигается она при  А = А2, следовательно, медиана Кемени - это А2.

Обратим внимание на то, что минимум  может достигаться не в одной  точке, а в нескольких. Поэтому  медиана Кемени - это, вообще говоря, не элемент соответствующего пространства, а его подмножество. Поэтому более  правильно сказать, что данных табл.3 медиана Кемени - это множество {А2}, состоящее из одного элемента А2, т.е. в условиях примера

Arg min D (Ai,A) = {А2}.

В общем случае вычисление медианы  Кемени - задача целочисленного программирования. В частности, для ее нахождения используется различные алгоритмы дискретной оптимизации, в частности, основанные на методе ветвей и границ. Применяют также алгоритмы, основанные на идее случайного поиска, поскольку для каждого бинарного отношения нетрудно найти множество его соседей.

Разработано весьма много различных методов экспертного оценивания (см., например, обзор []).

 

Литература

 

1. Большев Л.Н., Смирнов Н.В. Таблицы  математической статистики. - М.: Наука, 1983. - 416 с. 

2. Шрейдер  Ю.А. Равенство, сходство, порядок.  М.: Наука, 1971.

3. Горский В.Г., Орлов А.И., Гриценко А.А. Метод согласования кластеризованных ранжировок // Автоматика и телемеханика. 2000. №3. С.159-167.

4. Орлов  А.И. Устойчивость в социально-экономических  моделях. - М.: Наука, 1979. - 296 с. 

5. Кемени  Дж., Снелл Дж. Кибернетическое моделирование: Некоторые приложения. - М.: Советское радио, 1972. - 192 с.

6. Орлов  А.И. Экспертные оценки // Заводская  лаборатория. 1996. Т.62. № 1. С.54-60.


Информация о работе Эконометрические методы проведения экспертных исследований и анализа оценок экспертов