Автор: Пользователь скрыл имя, 14 Ноября 2011 в 08:38, курсовая работа
Моделирование, как метод научного познания, стало применяться еще в глубокой древности и постепенно захватило все новые области научных познаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования XX век. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться важная роль моделирования как универсального метода научного познания.
Пермский национальный
Курсовая работая
на тему:
История развития
«Экономико-математических методов и
моделей»
Пермь, 2011
Моделирование,
как метод научного познания, стало
применяться еще в глубокой древности
и постепенно захватило все новые области
научных познаний: техническое конструирование,
строительство и архитектуру, астрономию,
физику, химию, биологию и, наконец, общественные
науки. Большие успехи и признание практически
во всех отраслях современной науки принес
методу моделирования XX век. Однако методология
моделирования долгое время развивалась
независимо отдельными науками. Отсутствовала
единая система понятий, единая терминология.
Лишь постепенно стала осознаваться важная
роль моделирования как универсального
метода научного познания.
История применения
математических методов
в экономике
Применение
математических методов, в том числе
и методов математического
Революционный демократ, крупнейший экономист домарксовского периода Н. Г. Чернышевский (1828 – 1889) в замечаниях на трактат Д, С. Миля «Основания политической экономии» писал: «Мы видели уже много примеров тому, какими приемами пользуется политическая экономия для решения своих задач. Эти приемы математические. Иначе и быть не может, потому что предмет науки – количества, подлежащие счету и мере, понимаемые только через вычисление и измерение».
Понятие об экономике
как науке возникло в период расцвета
греческой рабовладельческой
Слово «экономия», от которого произошли такие понятия, как «экономика», «экономическая наука» и т. д., в переводе с греческого имеет смысл науки о ведении домашнего хозяйства. По своему основному содержанию она должна была заниматься вопросами рационального хозяйствования. Однако поскольку богатое греческое рабовладельческое хозяйство являлось сложной производственной системой, на которой отражались все процессы, происходившие в обществе, то эта наука неизбежно затрагивала и более общие проблемы: из каких хозяйственных единиц должно состоять разумно построенное государство; в каком отношении эти единицы должны обменивать производимые ими товары; какую роль играют торговля и деньги? Проблемы экономической науки в таком виде сформулировал великий греческий философ Аристотель, которого принято считать ее основателем. Аристотель первым пытался рассмотреть экономические закономерности, господствующие в обществе, выдвинул идею о различии между потребительной и меновой стоимостями товаров, высказал мысль о превращении денег в капитал и т. д.
Таким образом, еще в Древней Греции в экономической науке возникли два направления исследований: во-первых, это анализ методов рационального управления народным хозяйством и, во-вторых, изучение основных экономических закономерностей. В дальнейшем первое направление превратилось в науку о рациональном управлении деятельностью производительных единиц любого уровня – от производственного участка до экономики в целом. Второе направление дало начало экономической теории – науке, изучающей основные экономические закономерности сменяющих друг друга общественно-экономических формаций. Оба направления экономической науки развивались и развиваются в тесной связи между собой, их общность особенно заметна в исследованиях, направленных на изучение экономики страны как целого.
В системе экономических
наук главенствующее положение занимает
экономическая теория: она служит
теоретической и
Обычно в качестве исторически первой модели общественного производства называют экономическую таблицу Ф. Кене (1694 – 1774). В 1758 г. он опубликовал первый вариант своей «Экономической таблицы», второй вариант – «Арифметическая формула» - был опубликован в 1766 году. К. Маркс высоко оценил таблицу Ф. Кенэ. «Это попытка, - писал Маркс, - сделанная во второй трети XIII столетия, в период детства политической экономии, была в высшей степени гениальной идеей, бесспорно самой гениальной из всех, какие только выдвинула до сего времени политическая экономия».
Представители буржуазной политической экономии уже с середины XIX века в своих теоретических исследованиях начинают использовать все более и более сложный математический аппарат. В последнее тридцатилетие XIX века складывается самостоятельное математическое направление в буржуазной политической экономии.
Математическая школа возникла в рамках так называемого неоклассического направления в политической экономии, главным содержанием которого является теория предельной полезности (маржинализм). В ходе развитие неоклассического направления проблемы социально-экономической динамики незаметно исчезают из анализа, постепенно осуществляется переход к общим проблемам функционирования экономических систем, рыночных и ценовых механизмов, реализации принципа экономичности и рациональности в условиях совершенной конкуренции, условий частного и общего равновесия.
Родоначальником математической школы считается французский ученый О. Курно (1801 – 1877). В 1838 г. вышла его книга «Исследование математических принципов теории богатства» (О. Курно был известным математиком, философом, историком и экономистом).
Видными представителями математической школы являются Г. Госсен (1810 – 1859) в Германии, В. Джевонс (1835 – 1882) в Англии, Л. Вальрас (1834 – 1910) в Швейцарии, Г. Кассель (1866 – 1944) в Швеции, Ф. Эджворд (1845 – 1926) в Англии, В. Парето (1848 – 1923) в Италии, В. Дмитриев )1868 – 1913) в России.
Представители математического направления в буржуазной политической экономии достигли известных успехов в области математического моделирования, в раскрытии ряда объективных закономерностей производства, обмена, распределения и потребления. В этой связи необходимо отметить важность работ русского экономиста В. К. Дмитриева. Его основная работа «Экономические очерки. Опыт органического синтеза трудовой ценности и теории предельной полезности» была опубликована в 1904 году. В своих работах В, К. Дмитриев предвосхитил ряд выводов, которые позднее были получены В. Леонтьевым на основе анализа моделей «затраты – выпуск». В частности, эти выводы важны для подсчета коэффициентов полных материальных и трудовых затрат. Кроме того, стремясь примирить трудовую теорию стоимости с теорией предельной полезности, что, естественно, сделать невозможно, он тем не менее поставил проблему соотношения категорий стоимости и полезности.
Родоначальники математической школы рассматривали математические методы, математическое моделирование связей между элементами экономической системы как методы исследования, а не как методы изложения, иллюстраций экономических положений и законов, полученных других путем. Изложение же выводов, полученных математически, может быть дано и на обычном языке, или в математической форме, но без доказательства. Так, Л. Вальрас писал: «Весьма немногие из нас в состоянии прочесть «Математические начала натуральной философии» Ньютона или «Небесную механику» Лапласа, и тем не менее мы все принимаем на веру сделанное сведущими людьми описание мира астрономических явлений согласно закону всеобщего тяготения. Почему точно таким же образом не принять описание мира экономических явлений, сделанного согласно закону свободной конкуренции».
Представители математической школы с помощью математических методов стремились разрешить не отдельные частные проблемы экономической теории, а охватить весь экономический процесс в целом, дать общую картину взаимозависимости всех экономических явлений. Так, по мнению Парето, процесс научного прогресса проходит через три стадии: 1) мы ограничиваемся констатированием существованиям взаимодействия между отдельными элементами экономической системы, не входя в дальнейшее их изучение;
1) мы знаем отдельные связи, существующие между отдельными элементами;
1) мы имеем возможность вычислить величину всех этих элементов и дать совершенно точное выражение условий равновесия. Идеал всякой науки – достижение третьей стадии.
Математический
метод рассматривается как
Основным научным
результатом неоклассического направления
является разработка моделей частного
и общего равновесия и, условий использования
ресурсов, их оптимального распределения
по различным направлениям, условий
равновесия обмена и потребления. Сюда
относятся разработка моделей поведения
потребителя, построение функций спроса,
зависимостей спроса от цен и дохода, построение
производственной функции, моделей поведения
фирмы, моделей общего экономического
равновесия, прежде всего модели Л. Вальраса
и ее модификаций.
История
развития экономико-математического
моделирования в США
Для характеристики математического направления в экономике за последние 80 – 90 лет приведу лишь некоторые результаты, сыгравшие заметную роль в его развитии.
Как в теоретическом,
так и в прикладном отношении
представляют интерес работы по построению
и использованию
Опыт использования ПФ в сельском хозяйстве показал, что максимизация натуральных показателей продуктивности не совпадает, как правило, с максимизацией и минимизацией экономических показателей (прибыли, себестоимости), т. е. натурально-вещественный оптимум и экономический по своему существу разные понятия.
В 1928 г. Ч. Кобб и П. Дуглас на основе данных по обрабатывающей промышленности США за период 1899 – 1922 гг. представили функцию P = bLa K1-a. Это была первая эмпирическая ПФ, построенная по данным временных рядов. Ее конкретный вид: P = 1.01L0.75K0.25, где Р – расчетный индекс производства,
К – индекс основного капитала,
L – индекс занятости.
В настоящее время формула Кобба – Дугласа широко используется в учебной и научной литературе.
В 1928 г. В. Рамсей предложил упрощенную модель, в которой дается не только описание долгосрочного роста, но и ставится проблема определения его оптимального варианта. Модель интересна тем, что по существу она явилась предвестницей современного подхода к проблемам оптимального роста.
В 1932 г. Джон фон Нейман изложил основы многосекторной модели расширяющейся экономики, в которой ввел понятие динамического равновесия. С моделью Неймана связаны знаменитые теоремы о магистрали. Модель построена в предположении совершенной конкуренции, в рамках основных положений неоклассического направления.
В
30-х же годах значительное внимание
экономистами – математиками было
уделено проблеме существования
решения системы уравнений
Информация о работе История развития «Экономико-математических методов и моделей»