Автор: Пользователь скрыл имя, 24 Марта 2012 в 20:06, контрольная работа
Современная экономика представляет собой открытую систему, построенную на прямых и обратных горизонтальных и вертикальных связях, и может успешно развиваться только при наличии эффективного управления этими связями, как на макро -, так и на микроуровне. При этом проблема создания рациональной и высокоэффективной межотраслевой экономики чрезвычайно важна для всех стран.
Введение...................................................................................................................1
1. Экономико-математические модели: сущность и виды..................................2
2. Балансовый метод планирования.......................................................................7
3. Модели Леонтьева.
3.1. Модель Леонтьева многоотраслевой экономики..........................................9
3.2. Продуктивные модели Леонтьева.................................................................12
3.3. Вектор полных затрат....................................................................................15
3.4. Модель равновесных цен...............................................................................16
4. Практическое применение метода «затраты –выпуск».
4.1. Возможности методологии Леонтьева.........................................................18
4.2. Пример расчета межотраслевого баланса.
4.2.1. Построение межотраслевого баланса производства и распределения продукции...............................................................................................................23
4.2.2.Построение межотраслевого баланса затрат труда...................................26
4.2.3. Методика прогнозирования структуры общественного производства на основе межотраслевого баланса...........................................................................27
Заключение.............................................................................................................33
Приложение............................................................................................................35
Список использованной литературы...................................................................36
АхА + у = хА.
Поскольку хА = (хА, хn+1) ≥ 0, то хА ≥ 0.
Следовательно, матрица А продуктивна.
Следствие.
Если для неотрицательной матрицы А и некоторыого положительного вектора у уравнение (2.4) имеет неотрицательное решение х, то матрица А продуктивна.
Доказательство.
Как было уже показано, из существования положительного решения у уравнения (2.4) следует, что λА < 1. На основании теоремы Фробениуса матрица А продуктивна.
Теорема 3 (третий критерий продуктивности).
Неотрицательная матрица А продуктивна тогда и только тогда, когда сходится бесконечный ряд
Е + А + А² + … (2.10)
Доказательство.
Пусть сходится ряд (2.10). Согласно лемме его сема равна (Е – А)-1. При этом сумма указанного ряда будет неотрицательна, поскольку все слагаемые ряда неотрицательны. Итак, матрица (Е – А)-1 существует и неотрицательна. Отсюда по теореме 1.3 следует продуктивность А.
Обратное утверждение (если А продуктивна, то ряд (2.10) сходится) доказывать не будем.
3.3. Вектор полных затрат.
Пусть А ≥ 0. Равенство
(Е – А)-1 = Е + А + А2 + … (3.11)
справедливо, как мы уже знаем, в том случае, когда матрица А продуктивна, имеет экономический смысл.
х = у + Ау + А2у + … (3.12)
В чем смысл распадения вектора х на слагаемые у, Ау, А2у и т.д.? Для получения валового выпуска, обеспечивающего конечное потребление у, нужно прежде всего произвести набор товаров, описываемый вектором у. Но этого мало – ведь для получения у нужно затратить ( а значит, сначала произвести) продукцию, описываемую вектором Ау. Но и этого мало – для получения Ау нужно осуществить дополнительные затраты, описываемые вектором А(Ау) = А2у, и т.д. В итоге приходим к заключению, что весь валовой выпуск х должен составляться из слагаемых у, Ау, А2у и т.д., что и зафиксировано в формуле (3.12). В соответствии с этим рассуждением сумму у + Ау + А2у + … называют вектором полных затрат, а сделанное выше заключение формулируют так: вектор валового выпуска х совпадает с вектором полных затрат.
Чтобы сделать заключение более конкретным, рассмотрим такой пример. Пусть речь идет о блоке из трех промышленных отраслей:
металлургия;
электроэнергетика;
угледобыча.
Для получения конечного выпуска у = (у1 , у2 , у3)Т необходимо прежде всего произвести:
у1 т металла; у2 кВт.ч электроэнергии; у3 т угля.
Но для производства у1 т металла, в свою очередь, необходимо затратить (а значит, сначала произвести) какие-то количества металла, электроэнергии и угля. То же самое мправедливо и в отношении производства у2 кВт.ч. электроэнергии и у3 т угля
В свою очередь, для производства у11 т металла необходимо затратить какие-то количества металла, электричества и угля, и т.д. Искомый валовой выпуск х представляет собой сумму затрат 0-го порядка (вектор у), 1-го порядка (вектор Ау), 2-го порядка (А2у) и т.д.
3.4. Модель равновесных цен.
Рассмотрим теперь балансовую модель, двойственную к модели Леонтьева – так называемую модель равновесных цен. Пусть, как и прежде, А – матрица прямых затрат, х = (х1 , х2, …, хn)Т – вектор валового выпуска. Обозначим через р = (р1 , р2 , …, рn)Т вектор цен, i координата которого равна цене единицы продукции i-й отрасли; тогда, например, первая отрасль получит доход, равный р1 х1. Часть своего дохода эта отрасль потратит на закупку продукции у других отраслей. Так, для выпуска единицы продукции, ей необходима продукция первой отрасли в объеме а11, второй отрасли в объеме а21, и т.д., n-й отрасли в объеме аn1. На покупку этой продукции ею будет затрачена сумма, равная а11 р1 + а21 р2 + … + аn1 рn. Следовательно, для выпуска продукции в объеме х1 первой отрасли необходимо потратить на закупку продукции других отраслей сумму, равную х1(а11р1+а21р2+…+ аn1рn). Оставшуюся часть дохода, называемую добавленной стоимостью, мы обозначим через V1 (эта часть дохода идет на выплату зарплаты и налогов, предпринимательскую прибыль и инвестиции).
Таким образом, имеет место следующее равенство:
х1р1 = х1(а11р1+а21р2+…+ аn1рn) + V1.
Разделив это равенство на х1 получаем:
р1 = а11 р1 + а21 р2 + … + аn1 рn + v1,
где v1 = V1/х1 – норма добавленной стоимости (величина добавленной стоимости на единицу выпускаемой продукции). Подобным же образом получаем для остальных отраслей
р2 = а12 р1 + а22 р2 + … + аn2 рn + v2,
рn = а1n р1 + а2n р2 + … + аnn рn + vn.
Найденные
равенства могут быть записаны в
матричной форме следующим
р = АТр + v,
где v = (v1, v2, …, vn)Т – вектор норм добавленной стоимости. Как мы видим, полученные уравнения очень похожи на уравнения модели Леонтьева, с той лишь разницей, что х заменен на р, у – на v, А – на АТ.
.
4. Практическое применение метода «затраты –выпуск».
4.1. Возможности методологии Леонтьева.
Нужно
отметить, что В. Леонтьев занимался
разнообразными направлениями теоретического
анализа и экономической
Логика исследовательского поиска вывела В.В. Леонтьева на мировой уровень экономики. Применив новую методику, В. В. Леонтьев доказал, что если принять во внимание весь комплекс прямых и косвенных затрат, то экспорт из США оказывается более трудоемким и менее капиталоемким, чем импорт, хотя в США квота инвестиций достаточно высока, да и уровень зарплаты достаточно высок. Получается, что для США выгоднее экспортировать труд и импортировать капитал. Внешнеторговые преимущества, известные еще со времен Рикардо, обнаруживают свой условный, относительный характер. «Парадокс Леонтьева» стал источником новых размышлений и более глубокого анализа мировой торговли. В. В. Леонтьев возглавил группу экспертов, подготовивших по заказу ООН доклад-прогноз «Будущее мировой экономики». Он был переведен на русский язык и опубликован у нас еще в 1979 г. Исходными для анализа явились данные за 1970 г., а в прогнозе давались оценки на 1980, 1990 и 2000 гг.(3,28). Доклад должен был стать основой «стратегии развития» и создания нового экономического порядка, разрабатывавшихся под эгидой ООН.
Итак,
В. Леонтьев непрерывно работал над
расширением сферы применения методологии
межотраслевого анализа: экономическая
динамика и инвестиционные процессы,
взаимодействие экономики и окружающей
среды, межрегиональные и
1. взаимодействие экономики и окружающей среды
действительно,
профессор Леонтьев принадлежит
к первому ряду ученых-экономистов,
выразивших озабоченность состоянием
окружающей среды. Здесь его отличает
удивительное остроумие в распространении
метода «затраты-выпуск» на новые, качественно
разнообразные области
В работе содержится группировка стран
и регионов, находящихся, судя по основным
экономическим показателям, на разных
ступенях развития, и предлагаются два
альтернативных сценария их развития
к 2000 г. Предполагалось, например, что разрыв
между индустриально развитыми и развивающимися
странами в доходе на душу населения сократится
с 12 : 1 до 7 : 1.
Экспертные оценки свидетельствовали о том, что расходы на борьбу с загрязнением окружающей среды напрямую зависят от размера душевого дохода. В странах Африки, страдающих от засухи и эрозии почвы, доход на душу населения не превышал в 1970 г. 167 долл. в год против 2000—4000 долл. в мире индустриально развитых государств. Согласно прогнозу, душевой доход в странах засушливой Африки должен повыситься до 436 долл. Но темпы выброса твердых отходов будут в странах с низким доходом все же возрастать на 6% в год, содержание вредных примесей в воде — на 7% в год, между тем как темпы загрязнения воздуха и воды в Северной Америке и Европе останутся до конца века примерно на том же уровне (2—3%), со слегка понижательной тенденцией. Что касается капитальных затрат в очистном секторе, то их доля по отношению к совокупному капиталу повысится в Западной Европе до 3,9%, почти до 4% — в Японии, до 2,6% — в Советском Союзе (в 1970 г. последний показатель, поданный ООН, составлял 1,3%) (14).
Разумеется, прогнозы содержали приблизительные оценки и основывались на том видении мира, которое господствовало среди ученых в середине 70-х гг. Предвосхитить глобальные социально-политические сдвиги, которыми характеризовалось последнее десятилетие, было весьма затруднительно.
В целом прогноз относительно более быстрого экономического роста развивающихся стран оправдался, хотя в этом регионе произошла значительная дифференциация, выделилась группа государств, которые называются «новыми индустриальными». Это — Юго-Восточная Азия, Аргентина, Бразилия, ряд стран Ближнего Востока. По душевому продукту они соперничают со странами Европы и Северной Америки. Дифференциация привела также к тому, что терминология 70-х гг. — «третий мир», «развивающийся мир» — вряд ли подходит к сегодняшней структуре мира.
Не оправдался прогноз развития стран «централизованно планируемой экономики». Составлявшая в 1970 г. их доля в мировом материальном производстве — 21% — должна была увеличиться до 27% к 1990 г. и до 29% к 2000 г.(14)
2. Экономика вооружений и конверсии.
Василия
Васильевича часто бывал на
международных конференциях, посвященных
экономике разоружения, проблемам
конверсии военного производства. Он
видел свою задачу в том, чтобы, используя
шахматные балансы, методику «затраты—выпуск»,
рассчитать издержки производства оружия,
его воздействие на смежные отрасли,
а также определить наиболее рациональный
подход к конверсии, удешевить ее
и сберечь рабочие места. Так,
еще в 1941—1942 гг. В. Леонтьев опровергал
предсказания, что послевоенная конверсия
промышленности неизбежно приведет
к массовой безработице. Вопреки
убеждениям о падении спроса на продукцию
сталелитейной промышленности США
он доказывал (и это предположение
подтвердилось), что спрос на сталь
возрастет благодаря расширению
строительства и массовой реконструкции.
Значительно позже, анализируя влияние
автоматизации на экономическую
систему, он показал, что не абсолютное
сокращение занятости является ее главным
социальным последствием, а глубокие
структурные изменения, в том
числе в структуре занятости.
Общей чертой приводимых примеров является
учет эффекта косвенных