Автор: Пользователь скрыл имя, 16 Апреля 2012 в 17:35, отчет по практике
Целью учебной практики является изучение структуры металлургического предприятия с полным циклом производства. Металлургические предприятия принадлежат к отрасли называемой черной металлургией. Черная металлургия-отрасль промышленности, производящая металлические сплавы на основе железа, а именно чугун, сталь и ферросплавы.
Введение .................................................................................................................3
Структура металлургического предприятия с полным циклом производства.5
Углеподготовительный цех...................................................................................8
Агломерационное производство……………………………………………….14
Огнеупорное производство.................................................................................23
Горно-обогатительное производство.................................................................29
Доменное производство.......................................................................................34
Сталеплавильное производство..........................................................................39
Кислородно-конверторное производство..........................................................47
Коксохимическое производство.........................................................................57
Производство ферросплавов...............................................................................66
Прокатное производство......................................................................................74
Список литературы...............................................................................................80
Приложения .........................................................................................................81
Легирование твердыми ферросплавами. Это наиболее широко применяемый и простой метод. В цехах, где нет установок внепечной обработки стали, все легирующие вводят в ковш во время выпуска металла. При этом ферросплавы с элементами, обладающими высоким химическим сродством к кислороду (Ti, Zr, Са, Се и т.д.), а также с ванадием и ниобием вводят в ковш после дачи всех раскислителей. Часто применяемый для легирования хром вводят иногда в виде феррохрома, но лучше использовать экзотермический феррохром, растворение которого в жидком металле идет без затраты тепла, или силикохром, более легко-плавкий, чем феррохром, и требующий меньших затрат тепла на растворение.
Определяя расход ферросплавов, учитывают, что часть легирующих элеме-нтов угорает (окисляется и испаряется). Величину угара каждого элемента, кото-рая тем выше, чем выше сродство элемента к кислороду, определяют опытным путем, обобщая результаты ранее проведенных плавок.
Из-за возможного охлаждения жидкой стали и неравномерного при этом распределения элементов количество вводимых добавок ограничено и этим методом получают низколегированные стали с общим содержанием легирующих элементов не выше 2-3 %.
В цехах с установками внепечной обработки (доводки стали в ковше, ваку-умирования) легирующие вводят так же, как и раскислители, в последовательно-сти, определяемой их химическим сродством к кислороду. В ковш при выпуске вводят ферросплавы, содержащие элементы со сравнительно невысоким сродс-твом к кислороду (Cr, Mn и реже V, Nb, Si). При выпуске производят отсечку конвертерного шлака и в ковше наводят шлаковый покров, защищающий металл от окисления и охлаждения, после чего ковш передают на установку внепечной обработки. Здесь в объем перемешиваемого металла вводят алюминий и сплавы с другими элементами, обладающими высоким сродством к кислороду. Степень их усвоения сталью значительно повышается по сравнению с усвоением при введе-нии в ковш в процессе выпуска.
Для повышения степени усвоения широкое применение нашел способ вве-дения алюминия в объем металла в виде проволоки с помощью трайб-аппарата; ряд других элементов рекомендуется вдувать в металл в струе аргона (например, кальций), вводить в виде проволоки, имеющей стальную оболочку и наполнитель из легирующего элемента.
В процессе внепечной обработки отбирают пробы металла и на основании результатов анализа проводят корректировку содержания вводимых легирующих элементов. Благодаря перемешиванию металла в процессе внепечной обработки, равномерное распределение элементов в объеме ковша достигается при введении добавок в количестве до 3-4 %.
Легирование жидкими ферросплавами. Способ заключается в том, что при выпуске стали из конвертера в ковш заливают легирующие добавки, предварите-льно расплавленные в индукционной или дуговой электропечи. Метод позволяет вводить в сталь большое количество легирующих, но обладает существенным недостатком - необходимо иметь в цехе дополнительный плавильный агрегат, что усложняет организацию работ в цехе.
Легирование
экзотермическими ферросплавами. Ферросплавы
в виде брике-тов вводят в ковш перед выпуском
в него стали. В состав брикетов, помимо
измельченных легирующих (феррохрома,
ферромарганца и др.), входят окисли-тель
(например, натриевая селитра), восстановитель
(например, алюминиевый порошок) и связующие
(каменноугольный пек и т.д.). При растворении
брикетов в стали алюминий окисляется
за счет кислорода, содержащегося в натриевой
селит-ре; выделяющееся тепло расходуется
на расплавление легирующих. Подобным
методом с успехом вводят в сталь до 4 %
легирующих элементов. Способ не нашел
широкого применения из-за трудностей
в организации производства брикетов.
Коксохимическое производство.
Основным сырьём для коксохимической промышленности служат угли. Структура и строение углей могут быть изучены при помощи микроскопа. Грубая структура угля, обнаруживаемая невооруженным глазом, называется макрострук-турой. Обычный микроскоп позволяет видеть тонкую структуру угля, называе-мую микроструктурой.
В углях можно различить более или менее однородную блестящую массу (витрен), сероватую массу (дюрен), содержащую различные включения, волок-нистую часть (фюзен), похожую на древесный уголь, и минеральные включения. Витрен, дюрен и фюзен -- основные компоненты угля, представляющие его петрографический состав.
При использовании каменных углей для коксования необходимо знать также их технический состав, спекаемость, коксуемость, распределение минера-льных примесей в классах углей по их крупности и насыпной вес угольной шихты.
Под техническим составом топлива обычно подразумевают данные, харак-теризующие техническую применимость топлива. Технический состав угля опре-деляется содержанием влаги и минеральных примесей, выходом летучих веществ, содержанием серы и фосфора, углерода, водорода и азота, а также теплотой сгорания топлива.
Влажность углей. При нагревании угля до 100-105°С из него испаряется вода. Количество испаренной воды при этих условиях обычно выражают в проце-нтах к весу топлива и называют содержанием влаги в углях, или короче - влажно-стью углей.
Содержание минеральных примесей в угле характеризуется его зольностью. Зольность топлива определяется по выходу остатка после сжигания угля при температуре 800° С. Зольность угля, как и влажность, выражается в процентах к его весу. Чем меньше зольность исходной шихты, тем меньше зольность получаемого металлургического кокса.
Выход летучих веществ представляет собой количество образовавшихся газообразных продуктов в результате различных химических реакций в процессе термического разложения топлива. Выход летучих веществ характеризует химический возраст (зрелость) углей. Чем меньше выход летучих веществ из углей, тем выше их возраст.
Спекаемостью углей называется способность смеси угольных зерен образо-вывать при нагревании без доступа воздуха спекшийся или сплавленный нелету-чий остаток. Спекание углей - результат процессов термической деструкции, вызывающий переход их в пластическое состояние с последующим образованием полукокса - протекает главным образом в зоне температур 400-450° С.
Коксуемость углей обусловливается совокупностью всех процессов, кото-рые протекают при нагреве их до более высоких температур (1000-1100° С) и включают кроме процессов спекания упрочнение и усадку материала полукокса и кокса, образование трещин и другие явления. Поэтому коксуемостью называют способность угля самостоятельно или в смеси с другими углями при определен-ных условиях подготовки и нагревания до высоких температур образовывать кусковой пористый материал - кокс, обладающий определенной крупностью и механической прочностью.
Таким образом, понятия «спекаемость» и «коксуемость» различны. В первом случае мы имеем дело со способностью углей спекаться, а во втором - со способностью углей давать металлургический кокс.
Группы углей обычно обозначаются начальными буквами их названий. Буквами Д, Г, Ж, К, О, С и Т обозначены: длиннопламенные, газовые, жирные, коксовые, отощенные, спекающиеся и тощие угли. Вышеприведенный ряд углей характеризуется увеличением степени их химической зрелости (возраста). Часто для обозначения групп углей применяют их сочетание или дополнительные индексы, подразделяющие группы углей на подгруппы. Систематизация углей по группам и маркам представляет собой их классификацию.
Качество полученного кокса зависит в значительной мере от подготовки углей и правильности составления угольной шихты. На коксохимические заводы уголь поступает обычно со многих шахт и углеобогатительных фабрик, и специи-алист должен не только знать свойства и состав углей, но и умело составлять из них смесь, которая дает наилучший кокс. Составление угольных шихт для коксования (шихтование) производится эмпирически. Одно из основных требований к качеству кокса - высокая прочность при достаточной крупности. Поэтому спекаемость угольной шихты как фактор, обеспечивающий высокую прочность коксового вещества, должна быть всегда достаточной.
Однако при чрезмерно большой спекаемости, как, например, углей марок ПЖ и некоторых Г, получается кокс с высокой прочностью вещества, но мелкий, пористый и непригодный для доменных плавок. Чрезмерно отощенные угли или шихты при коксовании дают кокс крупный, но непрочный, легко истирающийся, также непригодный для доменных плавок. Отсюда следует, что спекаемость угольной шихты должна иметь оптимальное значение.
Для получения качественного кокса необходимо провести предварительную подготовку угольного материала к процессу коксования. Подготовка углей к коксованию включает ряд технологических процессов: обогащение, усреднение состава углей, дробление, грохочение, дозирование, уплотнение, сушку и др.
Угли при обогащении проходят обычно следующие технологические операции:
При выборе схемы подготовки углей к коксованию необходимо стремиться, прежде всего, к получению кокса наивысшего качества. Качество кокса будет тем выше, чем однороднее шихта по составу частиц угля. Частицы отощающего угля, имеющие меньший выход летучих веществ и пониженную спекаемость, должны более тонко дробиться по сравнению с углями других марок. Особенно тонко должны быть раздроблены минерализованные частицы шихты. Они не спекаются и около них в процессе коксования возникают трещины, понижающие качество кокса. С другой стороны, передрабливание угольных частиц ведет к образованию большого количества пыли, приводит к уменьшению насыпной плотности шихты и к понижению ее спекаемости. Все это указывает на то, что схема дробления углей должна выбираться, прежде всего, с учетом распределения минеральных примесей в угольных частицах.
Одним из факторов влияющим на качество кокса является спекаемость углей. Одним из весьма эффективных способов повышения спекаемости угольных шихт является их механическое уплотнение. Для этого шихту загружают слоями в специальный металлический ящик, имеющий форму камеры печи для коксования. Этот ящик устанавливают на машине, выталкивающей кокс из печи (коксовыталкивателе). Стены ящика могут сниматься или раздвигаться. Слои угля в ящике уплотняют специальными механическими трамбовками. Если уголь содержит 8-12% влаги, то из него получается не рассыпающийся достато-чно крепкий блок, который можно на металлической подине, как на лопате, ввести в камеру коксования. В результате коксования такого блока получается спекшийся пирог кокса, который далее обычным образом выдают из камер коксования. Трамбование позволяет получить кокс лучшего качества из слабоспекающихся угольных шихт.
Кокс хорошего качества можно получить из слабоспекающихся углей также и в том случае, если их массу уплотнить путем брикетирования. Брикеты камен-ных углей можно добавлять в обычную шихту и загружать вместе с ней в камеры для коксования. Этот способ в настоящее время нашел широкое применение.
2. Устройство коксовых печей.
Коксохимические заводы сооружаются, как правило, вблизи металлурги-ческих заводов и входят в их состав, либо как отдельные предприятия. Коксохи-мическая промышленность отличается высокой концентрацией производства, т. е. заводы являются весьма мощными и имеют высокую производительность.
Современные печи для коксования углей представляют собой горизонталь-ные прямоугольные камеры, выложенные из огнеупорного материала. Камеры течей обогреваются через боковые стены. Печи располагаются в ряд и объединя-ются в батареи для уменьшения потери тепла и достижения компактности. В типовую батарею печей с шириной камер 410мм входят обычно 65 печей, а в батарею большой емкости с камерами шириною 450мм входят 77 печей. Обычные камеры имеют полезный объем 20-21,6м3, а печи большой емкости--30м3. Шири-на печей более 450 мм нецелесообразна из-за ухудшения качества кокса (повыше-ния истираемости). Для облегчения выталкивания кокса из камеры коксования ширину камеры со стороны выдачи кокса делают на 40--50 мм шире, чем с машинной стороны. Таким образом, камера имеет вид конуса. За основные элементы батареи надо принять следующие: фундамент, регенераторы, корню-рную зону, зону обогревательных простенков, перекрытия простенков и пере-крытия камер.
Фундамент представляет собой бетонное основание, имеющее с боков железобетонные укрепления - контрфорсы, которые сдерживают перемещение кладки батареи при ее разогреве. Фундамент состоит из двух плит. На нижней плите установлены верхние сооружения батареи. В верхней плите обычно располагают борова печей. Батарея имеет четыре борова для отвода продуктов горения. Над фундаментом расположен подовый канал для подвода воздуха и бедного газа или же отвода продуктов горения из регенераторов.
Информация о работе Отчет по ознакомительной практике "интернет-магазин"