Моделирование (физическое, математическое, интеллектуальное, социальное) как одна из главнейших составных частей аппарата системного ана

Автор: Пользователь скрыл имя, 05 Октября 2011 в 22:36, доклад

Описание работы

Моделирование, т.е. построение, использование и совершенствование моделей. Системность деятельности проявляется в том, что она осуществляется по определенному плану, или, как мы уже отмечали, по определенному алгоритму. Следовательно, алгоритм – образ будущей деятельности, ее модель. Моделирование является обязательным, неизбежным действием во всякой целесообразной деятельности, пронизывает и организует ее, представляет собой не часть, а аспект этой деятельности.

Работа содержит 1 файл

Моделирование.doc

— 48.00 Кб (Скачать)

Федеральное государственное бюджетное образовательное  учреждение

    высшего профессионального образования 

    «РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И  ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» 

    КАФЕДРА

    Государственного  и муниципального управления 

    РЕФЕРАТ 

    студентки  5 курса  5176 группы

    Ковязиной Любови Александровны 

    ТЕМА:

     «Моделирование (физическое, математическое, интеллектуальное, социальное) как одна из главнейших составных частей аппарата системного анализа» 
 
 

            Научный руководитель

            Доктор философских наук, профессор

            Елфимов Геннадий Михайлович 
             
             
             

Санкт-Петербург

2011 г.

     Моделирование, т.е. построение, использование и  совершенствование моделей. Системность  деятельности проявляется в том, что она осуществляется по определенному плану, или, как мы уже отмечали, по определенному алгоритму. Следовательно, алгоритм – образ будущей деятельности, ее модель. Моделирование является обязательным, неизбежным действием во всякой целесообразной деятельности, пронизывает и организует ее, представляет собой не часть, а аспект этой деятельности.

     Модели  – это специальные системы. Мир  моделей системен. Целесообразная деятельность невозможна без моделирования. Сама цель уже есть модель желаемого состояния. И, алгоритм деятельности также модель это деятельности, которую еще предстоит реализовать. Модель отображает не сам по себе объект-оригинал, а то, что в нем нас интересует, т.е. то, что соответствует поставленной цели.

     Можно выделить три основные области применения моделей: обучение, научные исследования, управление. При обучении с помощью моделей достигается высокая наглядность отображения различных объектов и облегчается передача знаний о них. Это в основном модели, позволяющие описать и объяснить систему. В научных исследованиях модели служат средством получения, фиксирования и упорядочения новой информации, обеспечивая развитие теории и практики. В управлении модели используются для обоснования решений. Такие модели должны обеспечить как описание, так и объяснение, и предсказание поведения систем.

     В соответствии с классификационным признаком полноты моделирование делится на полное, неполное и приближенное. При полном моделировании модели идентичны объекту во времени и пространстве. Для неполного моделирования эта идентичность не сохраняется. В основе приближенного моделирования лежит подобие, при котором некоторые стороны реального объекта не моделируются совсем. Теория подобия утверждает, что абсолютное подобие возможно лишь при замене одного объекта другим точно таким же. Поэтому при моделировании абсолютное подобие не имеет места. Исследователи стремятся к тому, чтобы модель хорошо отображала только исследуемый аспект системы.

     В зависимости от типа носителя и сигнатуры модели различаются следующие виды моделирования: детерминированное и стохастическое, статическое и динамическое, дискретное, непрерывное и дискретно-непрерывное.

     Детерминированное моделирование отображает процессы, в которых предполагается отсутствие случайных воздействий. Стохастическое моделирование учитывает вероятностные процессы и события. Статическое моделирование служит для описания состояния объекта в фиксированный момент времени, а динамическое - для исследования объекта во времени. При этом оперируют аналоговыми (непрерывными), дискретными и смешанными моделями.

     В зависимости от формы реализации носителя и сигнатуры моделирование классифицируется на мысленное и реальное. Мысленное моделирование применяется тогда, когда модели не реализуемы в заданном интервале времени либо отсутствуют условия для их физического создания (например, ситуация микро­мира).

     При наглядном моделировании на базе представлений человека о реальных объектах создаются наглядные модели, отображающие явления и процессы, протекающие в объекте. Примером таких моделей являются учебные плакаты, рисунки, схемы, диаграммы.

 

     Математическое моделирование — это процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью. В принципе, для исследования характеристик любой системы математическими методами, включая и машинные, должна быть обязательно проведена формализация этого процесса, т.е. построена математическая модель. Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, от требуемой достоверности и точности решения задачи. Любая математическая модель, как и всякая другая, описывает реальный объект с некоторой степенью приближения.

     Для представления математических моделей  могут использоваться различные  формы записи. Основными являются инвариантная, аналитическая, алгоритмическая и схемная (графическая).

     Инвариантная  форма — запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели. В этом случае модель может быть представлена как совокупность входов, выходов, переменных состояния и глобальных уравнений системы. Аналитическая форма — запись модели в виде результата решения исходных уравнений модели. Обычно модели в аналитической форме представляют собой явные выражения выходных параметров как функций входов и переменных состояния.

     Для аналитического моделирования характерно то, что в основном моделируется только функциональный аспект системы. При этом глобальные уравнения системы, описывающие закон (алгоритм) ее функционирования, записываются в виде некоторых аналитических соотношений (алгебраических, интегро-дифференциальных, конечноразностных и т.д.) или логических условий. Аналитическая модель исследуется несколькими методами:

  • аналитическим, когда стремятся получить в общем виде явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными состояния системы;
  • численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных (напомним, что такие модели называются цифровыми);
  • качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

     Алгоритмическая форма — запись соотношений модели и выбранного численного метода решения в форме алгоритма. Среди алгоритмических моделей важный класс составляют имитационные модели, предназначенные для имитации физических или информационных процессов при различных внешних воздействиях. Собственно имитацию названных процессов называют имитационным моделированием.

     Информационное  (кибернетическое) моделирование связано с исследованием моделей, в которых отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию, рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Таким образом, в основе информационных (кибернетических) моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести данную функцию на имитационной модели, причем на совершенно другом математическом языке и, естественно, иной физической реализации процесса.

     Другим  видом реального моделирования  является физическое, отличающееся от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и модельном (псевдореальном) масштабах времени или рассматриваться без учета времени. В последнем случае изучению подлежат так называемые «замороженные» процессы, фиксируемые в некоторый момент времени.

     Этап  оценки модели является важным этапом моделирования. В зависимости от характера объекта исследования и поставленных задач применяются различные методы оценки модели. Особенно большое значение имеет правильная оценка модели, когда моделирование, используется для проверки гипотез, а также когда объекты недостаточно формализованы и нет строгого объективного критерия сходства объекта и модели. С подобной ситуацией часто приходится встречаться при моделировании интеллектуальных, творческих процессов.

 

Список  литературы:

  1. Управленческие решения: технология, методы и инструменты: учеб. пособие по специальности «Менеджмент орг.» / П.В.Шеметов и др. – М.: Издательство «Омега-Л», 2010. – 398 с.: табл., ил.- (высшая школа менеджмента).
  2. Анфилатов В.С. , Емельянов А.А., Кукушкин А.А. Системный анализ в управлении: Учеб. Пособие. / В.С.Анфилатов, А.А.Емельянов, А.А.Кукушкин; Под ред. А.А.Емельянова. – М.: Финансы и статистика, 2006. – 368 с.: ил. 
  3. Борисов В.В., Круглов В.В., Федулов А.С. Нечеткие модели и сети. – М.: Горячая линия – Телеком, 2007. – 284с.
  4. Попов В.Н. Системный анализ в менеджменте: учебное пособие. /    В.Н.Попов, В.С.Касьянов, И.П.Савченко; под ред. д-ра экон. наук, проф.    В.Н.Попова. – М.: КНОРУС, 2007. – 304 с.

Информация о работе Моделирование (физическое, математическое, интеллектуальное, социальное) как одна из главнейших составных частей аппарата системного ана