Автор: Александр Попов, 28 Сентября 2010 в 12:39, курсовая работа
Все взаимосвязано со всем - гласит первый экологический закон. Значит, и шага нельзя ступить, не задев, а порой и не нарушив чего-либо из окружающей среды. Каждый шаг человека по обычной лужайке - это десятки погубленных микроорганизмов, спугнутых насекомых, изменяющих миграционные пути, а может быть, и снижающих свою естественную продуктивность.
Уже в прошлом веке возникла тревога человека за судьбу планеты, а в текущем столетии дело дошло до кризиса мировой экологической системы из-за возрастания нагрузок на природную среду.
«Современный экологический кризис ставит под угрозу возможность устойчивого развития человеческой цивилизации. Дальнейшая деградация природных систем ведет к дестабилизации биосферы, утрате ее целостности и способности поддерживать качества окружающей среды, необходимые для жизни. Преодоление кризиса возможно только на основе формирования нового типа взаимоотношений человека и природы, исключающих возможность разрушения и деградации природной среды.
Устойчивое развитие Российской Федерации, высокое качество жизни и здоровья ее населения, а также национальная безопасность могут быть обеспечены только при условии сохранения природных систем и поддержания соответствующего качества окружающей среды. Для этого необходимо формировать и последовательно реализовывать единую государственную политику в области экологии, направленную на охрану окружающей среды и рациональное использование природных ресурсов. Сохранение и восстановление природных систем должно быть одним из приоритетных направлений деятельности государства и общества»
Введение……………………………………………………………………...3
Глава 1. Понятие популяции в экологии.
1.1. Определение популяции…………………………………………………..6
1.2. Состав популяции………………………………………………………….8
1.3. Свойства популяции……………………………………………………….8
1.4. Факторы динамики численности популяций………..………………….14
1.5. Пространственное размещение популяций………...…………………..19
Глава 2. Законы популяционной экологии…………..………..…………22
Глава 3. Экология популяций человека………………………………….28
3.1. Особенности популяций человека……………………...……………….28
3.2. Взаимодействие популяций человека с популяциями других видов организмов…………………………………………………………………….303.3. Законы, принципы и правила функционирования системы "человек-природа"……………………………………………………………………….32
Заключение……………………………………..……………………………35
Список использованной литературы………………………………….….38
Можно говорить о популяции как о реальном, физическом подразделении видового живого вещества и как об абстрактной универсальной категории. Попытки полноценно объединить в одном определении оба эти аспекты оказываются мало плодотворными.
Поэтому в конечном счете приходится ограничиться "компромиссным" определением:
Популяция - это некоторое множество организмов одного вида, обладающее относительной пространственно-временной обособленностью от аналогичных множеств, представляющее устойчивую целостность как функциональный элемент определенной экосистемы и имеющее специфическую форму.5
Как целостность популяция характеризуется протяженностью в пространстве, длительностью существования во времени, формой и ее изменениями, генетической общностью и функциональным единством.
Как
для множества для нее
Целостность,
отдельность популяции
Популяция
обладает только ей присущими особенностями:
численностью, плотностью, пространственным
распределением особей. Различают возрастную,
половую, размерную структуру популяции.
Соотношение разных по возрасту и полу
групп в популяции определяют ее основные
функции. Соотношение разных возрастных
групп зависит от двух причин: от особенностей
жизненного цикла вида и от внешних условий.
1.2. Состав популяции.
Условно в популяции можно выделить три экологические возрастные группы: пререпродуктивная — группа особей, возраст которых не достиг способности воспроизведения; репродуктивная — группа, воспроизводящая новые особи; пострепродуктивная — особи, утратившие способность участвовать в воспроизведении новых поколений. Длительность этих возрастов по отношению к общей продолжительности жизни сильно варьирует у разных организмов.
Выделяют виды с простой возрастной структурой, когда популяция представлена организмами одного возраста, и виды со сложной возрастной структурой, когда в популяции представлены все возрастные группы или одновременно живут несколько поколений.
Численность и плотность выражают количественные характеристики популяции как целого. Численность популяции выражается числом особей данного вида, обитающих на единице занимаемой ею площади. Динамика численности популяций во времени определяется соотношением показателей рождаемости, смертности, выживаемости, которые в свою очередь определяются условиями жизни.
Плотность популяции — это величина популяции, отнесенная к единице пространства: число особей, или биомасса, популяции на единицу площади или объема. Плотность зависит от трофического уровня, на котором находится популяция. Чем ниже трофический уровень, тем выше плотность.
У
многих видов в тех или иных
условиях рождаются преимущественно
самцы или самки, а иногда особи, неспособные
к воспроизведению. У тлей, например, летом
сменяют друг друга поколения, состоящие
из одних самок. При неблагоприятных условиях
появляются самцы. У некоторых брюхоногих
моллюсков, многощетинковых червей, рыб,
ракообразных происходит изменение пола
особи с возрастом.
1.3. Свойства популяций
От чего же зависят значения коэффициентов рождаемости и смертности? От очень многих факторов, действующих на популяцию извне, а также от собственных ее свойств. Объективный показатель способности организмов увеличивать свою численность —максимальная мгновенная скорость прироста популяции. Этот параметр обратно пропорционален продолжительности жизни организмов. В этом легко убедиться, обратившись к гиперболической зависимости между врожденной скоростью увеличения численности популяции и средним временем генерации, выраженным в днях (рис. 1). Мелкие организмы имеют более высокие значения rтах, чем крупные, что объясняется меньшим временем генерации. Причина подобной корреляции понятна, поскольку организму для достижения крупных размеров требуется много времени. Отсрочка периода размножения также неизбежно ведет к уменьшению rтах.
Тем не менее преимущества, даваемые большими размерами тела, должны превышать недостатки, связанные с уменьшением rтах, так как в противном случае крупные организмы никогда не появились бы в эволюции. Тенденция к возрастанию размеров тела с течением геологического времени, прослеженная по ископаемым остаткам, послужила основанием для введения понятия увеличение филетического размера.
Крупные размеры тела дают совершенно очевидные преимущества: более крупный организм должен привлекать меньше потенциальных хищников и, следовательно, он имеет больше шансов не стать жертвой и должен отличаться лучшей выживаемостью; мелкие организмы находятся в тесной зависимости от физической среды, даже очень слабые изменения которой могут оказаться для них губительными. Более крупные организмы легче переносят воздействие подобных изменений и соответственно лучше от них защищаются. Однако более крупным организмам требуется больше вещества и энергии в расчете на одну особь в единицу времени, чем мелким. Кроме того, для них существует гораздо меньше укрытий и безопасных мест.
В жизни всех организмов в популяции можно выделить три основных периода: предрепродуционный, репродукционный и пострепродукционный.
Относительная
Ярким примером могут служить
поденки, у которых предрепродуционный
период достигает 3 лет, а репродукционный
занимает всего от 2-3 ч до 1 суток. У американской
цикады предрепродуционный период составляет
17 лет. Но есть виды, особи которых, едва
появившись на свет, начинают интенсивно
размножаться (большинство бактерий).
Репродукционные возможности популяции зависят от ее возрастного состава. Продолжительность жизни особей популяции можно оценить, используя кривые выживания. Существует три типа кривых выживания (рис. 2).
Первый тип (кривые 1) соответствует ситуации, когда большее число особей имеет одинаковую продолжительность жизни и умирает в течение очень короткого отрезка времени. Кривые характеризуются сильно выпуклой формой. Такие кривые выживания свойственны человеку (рис. 2, 1), причем кривая выживания для мужчин по сравнению с аналогичной кривой для женщин менее выпуклая, поэтому страховой полис для мужчин в большинстве стран Запада в 1,5 раза дороже, чем для женщин. Для большинства копытных кривые выживания также выпуклые (рис. 3), хотя и в различной степени для разных видов, а также в зависимости от пола. Второй тип (рис. 2, 2) свойствен видам, коэффициент смертности которых остается постоянным на протяжении всей их жизни. Поэтому кривая выживания трансформируется в прямую линию. Такая форма кривой выживания свойственна пресноводной гидре. Третий тип (рис. 2, 3) — сильно вогнутые кривые, отражающие высокую смертность особей в раннем возрасте. Так характеризуется продолжительность жизни некоторых птиц, рыб, а также многих беспозвоночных.
Знание типа кривой выживания дает возможность построить пирамиду возрастов (рис. 4). Следует различать три типа таких пирамид. Пирамида с широким основанием, что соответствует высокому проценту молодняка, характерна для популяции с большим значением коэффициента рождаемости. Средний тип пирамиды соответствует равномерному распределению особей по возрастам в популяции со сбалансированными коэффициентами рождаемости и смертности — пирамида выровненная. Пирамида с узким основанием (обращенная), отвечающая популяции с численным преобладанием старых особей над молодняком, характерна для сокращающихся популяций. В таких популяциях коэффициент смертности превышает коэффициент рождаемости.
Большое значение для увеличения численности популяции имеют затраты на потомство, выражающиеся в определенной тактике размножения. Не все потомки равноценны: те из них, которые произведены на свет в конце вегетационного сезона, обычно имеют меньшую вероятность дожить до взрослого состояния по сравнению с потомками, появившимися на свет раньше. Сколько усилий должны родители затрачивать на каждого потомка? При постоянной величине репродуктивного усилия средняя приспособленность отдельного потомка связана обратным соотношением с их числом. Один крайний вариант тактики размножения — вложить все в единственного очень крупного и хорошо приспособленного потомка, другой — максимально увеличить общее число произведенных на свет потомков, вложив в каждую особь как можно меньше. Однако наилучшая тактика размножения —это компромисс между производством максимально большого числа потомков и образованием потомства максимально высокой приспособленности.
Указанное соотношение количества и качества потомства иллюстрирует простая графическая модель (рис. 5).
В маловероятном случае, т. е. в случае линейной зависимости приспособленности потомков от затрат на них родителей, приспособленность каждого отдельного потомка уменьшается с увеличением размера помета или кладки. Так как приспособленность родителей или, что то же самое, общая приспособленность всех потомков - постоянная величина, с точки зрения родителей не существует оптимального размера кладки. Однако поскольку первоначальные расходы на потомство вносят больший вклад в приспособленность потомков, чем последующие (имеет место 5-образный характер зависимости приспособленности потомков при увеличении вклада родителей; см. рис. 7.6), то очевидно, что существует некоторый оптимальный размер кладки. В данном гипотетическом случае родители, расходующие только 20% своего репродуктивного усилия на каждого из пяти своих потомков, получат большую отдачу от своего вклада, чем при любом другом размере кладки. Подобная тактика, будучи оптимальной для родителей, не является наилучшей для каждого отдельно взятого потомка, максимальная приспособленность которого достигается в том случае, если он единственный отпрыск, получивший полный вклад усилий от своих родителей. Следовательно, в данном случае налицо «конфликт родителей и детей».
Особенно большое влияние на форму S-образной кривой оказывает конкурентная обстановка. В сильно разреженной среде (конкурентный вакуум) наилучшей репродуктивной стратегией следует считать максимальный вклад вещества и энергии в размножение для продуцирования как можно большего количества потомков в самые короткие сроки. Поскольку конкуренция невелика, потомки могут выжить, даже если они имеют очень малые размеры и низкую приспособленность. Однако в насыщенной среде обитания, где заметно проявляются эффекты массы, а конкуренция остра, оптимальной стратегией будет расходование большого количества энергии на преодоление конкуренции, повышение собственной выживаемости и на продуцирование более конкурентоспособных потомков. При подобной стратегии лучше иметь крупных потомков, а поскольку энергетически они дороже, их может быть произведено на свет меньше.
Итак, свойства популяции можно оценить по таким показателям, как рождаемость, смертность, возрастная структура, соотношение полов, частота генов, генетическое разнообразие, скорость и форма кривой роста и т. д.
Плотность
популяции определяется ее внутренними
свойствами, а также зависит от факторов,
действующих на популяцию извне.
1.4. Факторы динамики численности популяций
Известно три типа зависимости численности популяции от ее плотности (рис. 6). При первом типе (кривая 1) скорость роста популяции уменьшается по мере увеличения плотности. Это широко распространенное явление позволяет понять, почему популяции некоторых животных относительно устойчивы. Во-первых, при увеличении плотности популяции наблюдается снижение рождаемости. Так, в популяции большой синицы при плотности меньше одной пары на 1 га на одно гнездо приходится 14 птенцов; когда же плотность достигает 18 пар на 1 га, выводок составляет менее 8 птенцов. Во-вторых, при увеличении плотности популяции меняется возраст наступления половой зрелости. Например, африканский слон в зависимости от плотности популяции может достигать половой зрелости в возрасте от 12 до 18 лет. Кроме того, этот вид при низкой плотности дает приплод 1 слоненок за 4 года, тогда как при высокой — рождаемость составляет 1 слоненок за 7 лет.
При втором типе зависимости (кривая 2) темп роста популяции максимален при средних, а не при низких значениях плотности. Так, у некоторых видов птиц (например, чаек) число птенцов в выводке увеличивается с повышением плотности популяции, а затем, достигнув наибольшей величины, начинает уменьшаться. Этот тип влияния плотности популяции на скорость размножения особей характерен для видов, у которых отмечен групповой эффект. При третьем типе (кривая 3) темп роста популяции не изменяется до тех пор, пока она не достигнет высокой плотности, затем резко падает.
Подобная картина наблюдается, например, у леммингов. При пике численности плотность леммингов становится избыточной, и они начинают мигрировать. Элтон так описал миграции леммингов в Норвегии: животные проходили через деревни в таком количестве, что собаки и кошки, которые вначале нападали на них, просто перестали их замечать. Достигнув моря, обессиленные лемминги тонули.
Регуляция
численности равновесных