Автор: Пользователь скрыл имя, 19 Февраля 2012 в 21:49, реферат
История создания атомного оружия. Реакция деления атомных ядер. Атомные заряды. Ядерные боеприпасы. При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, проникающая радиация и электромагнитный импульс. Средства защиты населения от аварий в районах АЭС, а также от ОМП и других современных средств нападения.
Глава 1: как создавалось ядерное оружие...............................................................3
Глава 2: физические основы ядерного взрыва........................................................5
Глава 3: ядерные заряды............................................................................................8
Глава 4: поражающие факторы ядерного взрыва...................................................10
Глава 5: звщитные сооружения................................................................................15
БЕЗОПАСНОСТЬ
ЖИЗНЕДЕЯТЕЛЬНОСТИ
РЕФЕРАТ
Оружие массового поражения
и
основные поражающие
факторы от его
воздействия
выполнила:
студентка факультет документоведения и ДОУ
Фоменко
Ева Андреевна
Москва 2011
Глава 1: как создавалось
ядерное оружие................
Глава 2: физические
основы ядерного взрыва........................
Глава 3: ядерные
заряды........................
Глава 4: поражающие
факторы ядерного взрыва........................
Глава 5: звщитные
сооружения....................
В 1905 Альберт Эйнштейн издал свою специальную теорию относительности. Согласно этой теории, соотношение между массой и энергией выражено уравнением E = mc^2, которое значит, что данная масса (m) связана с количеством энергии (E) равной этой массе, умноженной на квадрат скорости света (c). Очень малое количество вещества эквивалентно к большому количеству энергии. Например, 1 кг вещества, преобразованного в энергию был бы эквивалентен энергии, выпущенной, при взрыве 22 мегатонн тротила.
В 1938 г, в результате экспериментов немецких химиков Отто Хана и Фритца Страссманна (1902-80), им удается разбить атом урана на две приблизительно равных части при помощи бомбардировки урана нейтронами. Британский физик Отто Роберт Фриш (1904-79), объяснил как при делении ядра атома выделяется энергия.
В начале 1939 года французский физик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии, как обычное взрывное вещество.
Это заключение стало толчком для разработок по созданию ядерного оружия. Европа была накануне Второй мировой войны, и потенциальное обладание таким мощным оружием подталкивало милитаристские круги на быстрейшее его создание, но тормозом стала проблема наличия большого количества урановой руды для широкомасштабных исследований.
Над созданием атомного оружия трудились физики Германии, Англии, США, Японии, понимая, что без достаточного количества урановой руды невозможно вести работы. США в сентябре 1940 года закупили большое количество требуемой руды по подставным документам у Бельгии, что и позволило им вести работы над созданием ядерного оружия полным ходом.
Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту. В нем якобы говорится о попытках нацистской Германии очистить Уран-235, что может привести их к созданию атомной бомбы. Сейчас стало известно, что германские учёные были очень далеки от проведения цепной реакции. В их планы входило изготовление "грязной", сильно радиоактивной бомбы.
Как бы то ни было, правительством Соединённых Штатов было принято решение - в кратчайшие сроки создать атомную бомбу. Этот проект вошел историю как "Manhattan Project". Возглавил его Лесли Гровс. Следующие шесть лет, с 1939 по 1945, на проект Манхэттен было потрачено более двух биллионов долларов. В Oak Ridge, штат Теннеси, был построен огромный завод по очистке урана. H.C. Urey и Ernest O. Lawrence (изобретатель циклотрона) предложили способ очистки, основанный на принципе газовой диффузии с последующим магнитным разделением двух изотопов. Газовая центрифуга отделяла легкий Уран-235 от более тяжелого Урана-238.
На территории Соединенных Штатов, в Лос-Аламосе, в пустынных просторах штата Нью-Мексико, в 1942 году был создан американский ядерный центр. Над проектом работало множество учёных, главным же был Роберт Оппенгеймер. Под его началом были собраны лучшие умы того времени не только США и Англии, но практически всей Западной Европы. Над созданием ядерного оружия трудился огромный коллектив, включая 12 лауреатов Нобелевской премии. Работа в Лос-Аламосе, где находилась лаборатория, не прекращалась ни на минуту.
В Европе тем временем шла Вторая мировая война, и Германия проводила массовые бомбардировки городов Англии, что подвергало опасности английский атомный проект “Tub Alloys”, и Англия добровольно передала США свои разработки и ведущих ученых проекта, что позволило США занять ведущее положение в развитии ядерной физики (создания ядерного оружия). 16 июля 1945 года, в 5:29:45 по местному времени, яркая вспышка озарила небо над плато в горах Джемеза на севере от Нью-Мехико. Характерное облако радиоактивной пыли, напоминающее гриб, поднялось на 30 тысяч футов. Все что осталось на месте взрыва - фрагменты зеленого радиоактивного стекла, в которое превратился песок. Так было положено начало атомной эре.
К осени 1944 года, когда работы по созданию атомной бомбы подходили к завершению, в США был создан 509-й авиаполк “летающих крепостей” Б-29, командиром которого был назначен опытный летчик полковник Тиббетс. Полк приступил к регулярным длительным тренировочным полетам над океаном на высотах 10-13 тысяч метров. К лету 1945 года американцам удалось собрать две атомные бомбы, получившие названия "Малыш" и "Толстяк". Первая бомба весила 2722 кг и была снаряжена обогащенным Ураном-235. "Толстяк" с зарядом из Плутония-239 мощностью более 20 кт имела массу 3175 кг.
Президент США Г. Трумэн стал первым политическим руководителем, кто принял решение на применение ядерных бомб. С военной точки зрения необходимости таких бомбардировок густонаселенных японских городов не было. Но политические мотивы в этот период превалировали над военными.
10
мая 1945 года в “Пентагоне”
собрался комитет по выбору
целей для нанесения первых
ядерных ударов. Для победного
завершения Второй мировой
Утром 6 августа 1945 г. над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолета (один из них назывался Энола Гей) на высоте 10-13 км не вызвало тревоги (т.к. каждый день они показывались в небе Хиросимы). Один из самолетов спикировал и что-то сбросил, а затем оба самолета повернули и улетели. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600 м над землей взорвался. Это была бомба "Малыш".
9
августа еще одна бомба была
сброшена над городом Нагасаки.
Общие людские потери и
Считается, что это событие положило начало гонке ядерных вооружений и противостоянию двух политических систем того времени на новом качественном уровне. С середины 1945 года и по 1953 год американское военно-политическое руководство в вопросах строительства стратегических ядерных сил (СЯС) исходило из того, что США монопольно владеют ядерным оружием и могут достичь мирового господства путем ликвидации СССР в ходе ядерной войны.
Подготовка к такой войне началась практически сразу после разгрома гитлеровской Германии. Об этом свидетельствует директива Объединенного комитета военного планирования от 14 декабря 1945 года, где ставилась задача на подготовку атомной бомбардировки 20 советских городов - основных политических и промышленных центров Советского Союза (Москва, Ленинград, Горький, Куйбышев, Свердловск, Новосибирск, Омск, Саратов, Казань, Баку, Ташкент, Челябинск, Нижний Тагил, Магнитогорск, Пермь, Тбилиси, Новокузнецк, Грозный, Иркутск, Ярославль). При этом планировалось использовать весь наличный на то время запас атомных бомб (196 штук), носителями которых являлись модернизированные бомбардировщики В-29. Определялся и способ их применения - внезапный атомный "первый удар", который должен поставить советское руководство перед фактом бесперспективности дальнейшего сопротивления.
К середине 1948 года в Комитете начальников штабов был составлен план ядерной войны с СССР, получивший кодовое название "Чариотир". Он предусматривал, что война должна начаться "с концентрированных налетов с использованием атомных бомб против правительственных, политических и административных центров, промышленных городов и избранных предприятий нефтеочистительной промышленности с баз в западном полушарии и Англии". Только за первые 30 дней намечалось сбросить 133 ядерные бомбы на 70 советских городов. Среди Лос-Аламовских ученых над созданием атомной бомбы работал немецкий коммунист Клаус Фукс. Благодаря ему СССР всего через 4 года после американцев стал ядерной державой. Он в течение 1945 -1947 годов четыре раза передавал сведения по практическим и теоретическим вопросам создания атомной и водородных бомб, чем ускорил их появление в СССР.
Через 12 дней после сборки первой атомной бомбы в Лос-Аламосе мы получили описание ее устройства из Вашингтона и Нью-Йорка. Первая телеграмма поступила в Центр 13 июня, вторая - 4 июля 1945 года. Детальный доклад Фукса ("Чарльз") был доставлен диппочтой после того, как он встретился 19 сентября со своим курьером Гарри Голдом.
Доклад содержал тридцать три страницы текста с описанием конструкции атомной бомбы. Позднее было получено дополнительное сообщение по устройству атомной бомбы. Сообщение о том, что американцы взорвали атомное устройство впечатления на И.В. Сталина не произвело. Но последствия бомбардировок г. Хиросимы и г. Нагасаки потрясли его.
Сталин
приказал Л. Берии продумать вопрос
о создании собственного ядерного оружия.
Последний хотел
В феврале 1945 года были захвачены немецкие документы о высококачественных запасах урана в районе Бухово - в Родопских горах, Болгария. Было создано советско-болгарское горное общество, которое занималось добычей урана. Урановая руда из Бухово была использована при пуске первого советского атомного реактора. В 1946 году в СССР были открыты и сразу же стали разрабатываться крупные месторождения урана более высокого качества.
Сообщение о том, что Советский Союз овладел секретом ядерного оружия вызвало у правящих кругов США желание как можно быстрее развязать превентивную войну. Был разработан план "Тройан", в котором предусматривалось начать боевые действия 1 января 1950 года. На то время США располагало 840 стратегическими бомбардировщиками в строевых частях, 1350 - в резерве и свыше 300 атомными бомбами.
В районе г. Семипалатинска был построен испытательный полигон. Ровно в 7.00 утра 29 августа 1949 года на этом полигоне было подорвано первое советское ядерное устройство под кодовым названием "РДС-1". План "Тройан", согласно которому на 70 городов СССР должны были быть сброшены атомные бомбы, был сорван из-за угрозы ответного удара. Событие, происшедшее на Семипалатинском полигоне, известило мир о создании в СССР ядерного оружия, что положило конец американскому монополизму на владение новым для человечества оружием.
Ядерным взрывом называется взрыв, происходящий в результате освобождения энергии, заключенной в ядрах атомов химических элементов.
Возможность выделения внутриядерной энергии обусловлена следующими природными свойствами химических элементов:
- атомные
ядра различных изотопов
- превращение
ядер с меньшей средней
Эти свойства позволяют выделить внутриядерную энергию в результате деления ядер тяжелых химических элементов (с большим массовым числом) и синтеза ядер легких элементов (с малым массовым числом).
Реакция деления атомных ядер.
Деление
атомных ядер может происходить
самопроизвольно или при
Для получения взрыва используют деление ядер тяжелых изотопов, которое происходит при воздействии на них нейтронов любых энергий, протекает с высокой скоростью (одно деление длится 10-15—10-14 с), сопровождается выделением большого количества энергии (около 200 МэВ на одно деление) и испусканием двух или более нейтронов, способных вызвать деление других ядер. В большой массе таких изотопов под воздействием нейтронов любых энергий возникает саморазвивающаяся цепная ядерная реакция деления, сопровождающаяся лавинообразным нарастанием числа делящихся ядер и выделением вследствие этого большого количества энергии в течение малого промежутка времени. Такими свойствами обладают уран-233, уран-235, плутоний-239, плутоний-241 и ряд трансплутониевых элементов. Их называют делящимися изотопами.
В ядерных
боеприпасах могут
Основными делящимися изотопами, используемыми в настоящее время в качестве ядерного горючего, являются уран-235, плутоний-239 и уран-233. Из них практически только уран-235 существует в природе. Он встречается в природном уране, представляющем собой смесь трех изотопов: урана-238 (99,282%), урана-235 (0,712%) и урана-234 (0,006%). Изотопы плутония-239 и урана-233 в промышленных количествах получают в результате облучения нейтронами в ядерных реакторах урана-238 и тория-232 соответственно. Из изотопов с пороговым характером деления в качестве ядерного горючего применяется уран-238.
Уран — металл серебристого цвета с голубоватым оттенком. Он обладает высокой химической активностью, в природе встречается только в виде соединений. Содержание урана в рудах большинства месторождений составляет менее одного процента.
Плутоний — серебристый металл. Он токсичен, химически более активен, чем уран. В природе плутоннй-239 в ничтожно малых количествах обнаруживается в урановых рудах. Его содержание по отношению к урану составляет 10-9%. Поэтому даже богатые урановые месторождения не могут быть источниками промышленного получения плутония.
Уран
и плутоний радиоактивны. Они подвержены
самопроизвольному альфа-
Критическая масса делящегося вещества зависит от его геометрической формы, объема, плотности и количества посторонних примесей, которые могут поглощать нейтроны, не подвергаясь делению, либо замедлять их (снижать их энергию).
Критическая масса делящегося вещества в форме шара является наименьшей по отношению к другим геометрическим формам равного объема. Это объясняется тем, что для шара свойственно наименьшее отношение площади поверхности к объему, а следовательно, минимальное относительное количество нейтронов, выходящих за пределы массы делящегося вещества не вызывая делений ядер (нейтронов утечки).
Критическая масса шара из урана-235 при нормальной плотности и чистоте ~95% составляет 40-—60 кг, а из плутония-239 — 10—20кг.
При увеличении количества примесей в делящемся веществе его критическая масса увеличивается, при увеличении плотности делящегося вещества — уменьшается.
Значение
критической массы можно
Чтобы произошел взрыв, масса делящегося вещества должна быть надкритической, т. е. стать больше критической. Создание такой массы должно происходить за короткий промежуток времени, иначе возможно расплавление и преждевременное разбрасывание делящегося вещества.
Энерговыделение при реакции деления атомных ядер, приходящееся на единицу массы вещества, в десятки миллионов раз превышает соответствующее энерговыделение при обычном взрыве. Например, при делении всех ядер, содержащихся в одном килограмме урана, выделяется такое же количество энергии, как при взрыве 20 тыс. т тротила.
Реакция синтеза атомных ядер.
Реакция синтеза легких ядер может начаться и протекать лишь при нагреве вещества до температуры, при которой кинетическая энергия теплового движения ядер становится достаточной для преодоления сил взаимного электрического отталкивания, действующих между ними.
Реакции синтеза легких ядер, эффективно протекающие в условиях нагрева вещества до температуры десятков миллионов градусов и более, называются термоядерными.
Наиболее
легко протекает реакция
Реакция синтеза ядер происходит с большой скоростью, при этом выделяется достаточно большое количество энергии. Например, один акт слияния дейтерия и трития длится несколько наносекунд (1 нс=10-9 с) с выделением энергии, равной 17,6 МэВ, и испусканием нейтрона высокой энергии.
Температуру, при которой начинается реакция синтеза, достигают с помощью ядерного взрыва, основанного на реакции lеления атомных ядер. Возможны реакции синтеза и между ядрами других элементов, однако вследствие необходимости крайне высоких температур для их начала и протекания они практического значения в настоящее время не имеют. Изотопы, которые используют для получения взрыва в результате реакции синтеза их атомных ядер, называют термоядерным горючим. В качестве термоядерного горючего в настоящее время используют изотопы водорода — дейтерий и тритий. В свободном виде дейтерий и тритий представляют собой газы. Атомарное содержание дейтерия в природном водороде составляет около 0,015%, трития — 10-16%. Дейтерий встречается в природе в свободном состоянии и в химическом соединении D2O, называемом тяжелой водой. Тяжелая вода содержится в обычной воде в количестве 0,015%. Для практических нужд дейтерий получают электролизом тяжелой воды (из 1000 кг воды получается 20 г дейтерия). Дейтерий является стабильным изотопом, тритий — радиоактивным. Последний подвержен бета-распаду с периодом полураспада около 12,3 лет. В результате распада тритий превращается в гелий-3. Тритий в небольшом количестве содержится в атмосфере. Он образуется в результате взаимодействия ядер азота с нейтронами и расщепления ядер различных химических элементов космическими частицами высоких энергий. Для промышленных нужд тритий получают в ядерных реакторах в результате облучения лития-6 нейтронами. При синтезе всех ядер дейтерия и трития, содержащихся в одном килограмме их смеси, освобождается примерно такая же энергия, как при взрыве 80 тыс. т тротила.
Устройства,
предназначенные для
- заряды,
энергия взрыва которых
- заряды, энергия взрыва которых обусловлена реакциями деления и синтеза ядер, — термоядерные заряды.
Атомные заряды.
Основным
элементом атомных зарядов
В зарядах имплозивного типа делящееся вещество, имеющее при нормальной плотности массу меньше критической, переводится в надкритическое состояние повышением его плотности в результате всестороннего обжатия с помощью взрыва обычного взрывчатого вещества. В таких зарядах представляется возможность получить высокую надкритичность и, следовательно, высокий коэффициент полезного использования делящегося вещества. Максимальное увеличение плотности делящегося вещества достигается при его сферическом обжатии в результате взрыва сферического слоя взрывчатого вещества.
Термоядерные заряды. Основными элементами термоядерного заряда являются термоядерное горючее и атомный заряд—инициатор реакции синтеза. В связи с тем что дейтерий и тритий в свободном состоянии представляют собой газы, а тритий, кроме того, является радиоактивным и дорогостоящим изотопом, в качестве первичного термоядерного горючего обычно используют дейтерид лития-6 — твердое вещество, представляющее собой соединение дейтерия и лития-6. При облучении лития-6 нейтронами, возникающими при взрыве атомного заряда (инициатора реакции синтеза), образуется тритий, который и вступает в реакцию синтеза с дейтерием. Образующиеся при реакции синтеза нейтроны вновь приводят к образованию трития, а следовательно, к поддержанию реакции синтеза.
Термоядерные заряды условно разделяют на обычные и специализированные. Для обычных термоядерных зарядов распределение энергии взрыва между поражающими факторами близко к ее распре делению при взрывах атомных зарядов, для специализированных — характерно резкое изменение распределения энергии взрыва между поражающими факторами по сравнению с ее распределением при взрывах атомных зарядов. К специализированным термоядерным зарядам относятся, например, нейтронные, «чистые» и др. Для нейтронных зарядов характерны в несколько раз больший удельный (на единицу энергии взрыва) выход нейтронов и повышенная их энергия. У «чистых» зарядов резко снижен вклад в общее энерговыделение реакции деления, т. е. резко уменьшен выход радиоактивных продуктов. В процессе реакции синтеза образуется большое количество нейтронов с высокой энергией, которые способны вызывать деление ядер урана-238. Поэтому для увеличения энергии взрыва в термоядерных зарядах используют оболочки из урана-238 — самого распространенного и наиболее дешевого изотопа урана.
Ядерные боеприпасы
Ядерными называются боеприпасы, снаряженные ядерными зарядами:
- головные части
(боевые блоки) баллистических
ракет;
- боевые части крылатых и зенитных ракет;
- авиационные бомбы;
- артиллерийские снаряды и мины;
- боевые зарядные отделения торпед;
- инженерные мины.
Основными элементами ядерных боеприпасов являются: корпус, ядерный заряд и система автоматики. Корпус предназначен для размещения ядерного заряда и системы автоматики, а также предохранения их от механических, а в некоторых случаях и от тепловых повреждений, для придания боеприпасу баллистической формы и для стыковки боеприпаса с носителем. Конструкция корпуса зависит от типа носителя. Так, например, головные части баллистических ракет имеют корпуса конической или цилиндроконической формы теплозащитным покрытием, корпусом боевых зарядных отделений торпед, боевых частей крылатых и зенитных ракет служит тонкостенная ампула, размещаемая внутри носителя. Система автоматики обеспечивает взрыв ядерного заряда в заданный момент времени и исключает его случайное или преждевременное срабатывание. Она включает:
- источники питания;
- систему предохранения и взведения;
- систему датчиков подрыва;
- систему подрыва заряда;
- систему аварийного подрыва.
Система
предохранения и взведения
При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, проникающая радиация и электромагнитный импульс. Энергия ядерного взрыва распределяется примерно так: 50% расходуется на ударную волну, 35% – на световое излучение, 10% – на радиоактивное заражение, 4% – на проникающую радиацию и 1% – на электромагнитный импульс. Высокая температура и давление вызывают мощную ударную волну и световое излучение. Взрыв ядерного боеприпаса сопровождается выходом проникающей радиации, состоящей из потока нейтронов и гамма квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления ядерного горючего. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха. Не равномерное движение электрических зарядов в воздухе под воздействием ионизирующих излучений приводит к образованию электромагнитного импульса. Так формируются основные поражающие факторы ядерного взрыва. Явления, сопровождающие ядерный взрыв, в значительной мере зависят от условий и свойств среды, в которой он происходит.
Это основной поражающий фактор ядерного взрыва, который производит разрушение, повреждение зданий и сооружений, а также поражает людей и животных. Источником УВ является сильное давление, образующееся в центре взрыва (миллиарды атмосфер). Образовавшееся при взрыве раскаленные газы, стремительно расширяясь, передают давление соседним слоям воздуха, сжимая и нагревая их, а те в свою очередь воздействуют на следующие слои и т.д. В результате в воздухе со сверхзвуковой скоростью во все стороны от центра взрыва распространяется зона высокого давления.
Так, при взрыве 20-килотонного ядерного боеприпаса ударная волна за 2 секунды проходит 1000 м, за 5 секунд – 2000 м, за 8 сек – 3000 м. Передняя граница волны называется фронтом ударной волны. Степень поражения УВ зависит от мощности и положения на ней объектов. Поражающее действие УВ характеризуется величиной избыточного давления.
Избыточное давление – это разность между максимальным давлением во фронте УВ и нормальным атмосферным давлением, измеряется в Паскалях (ПА, кПА). Распространяется со сверх звуковой скоростью, УВ на своем пути разрушает здания и сооружения, образуя четыре зоны разрушений (полных, сильных, средних, слабых) в зависимости от расстояния: Зона полных разрушений — 50 кПА Зона сильных разрушений — 30-50 кПА. Зона средних разрушений — 20-30 кПА. Зона слабых разрушений — 10-20 кПА.
С ростом
калибра ядерного боеприпаса радиусы
поражения ударной волной растут
пропорционально корню
УВ действует на людей двумя способами:
Прямое действие УВ
Косвенное действие УВ ( летящими обломками сооружений, падающими стенами домов и деревьями, осколками стекла, камнями). Эти воздействия вызывают различные по степени тяжести поражения: Легкие поражения — 20-40 кПА (контузии, легкие ушибы). Средней тяжести — 40-60 кПА (потеря сознания, повреждение органов слуха, вывихи конечностей, кровотечение из носа и ушей, сотрясение мозга). Тяжелые поражение — более 60 кПА (сильные контузии, переломы конечностей, поражение внутренних органов). Крайне тяжелые поражения — более 100кПА ( со смертельным исходом). Эффективным способом защиты от прямого воздействия УВ будет укрытие в защитных сооружениях (убежищах, ПРУ, быстровозводимых населением). Для укрытия можно использовать канавы, овраги, пещеры, горные выработки, подземные переходы; можно просто лечь на землю в отдалении от зданий и сооружений.
Световое
излучение (СИ) – это поток лучистой энергии
(ультрафиолетовые и инфракрасные лучи).
Источником СИ является светящаяся область
взрыва, состоящая из нагретых до высокой
температуры паров и воздуха. СИ распространяется
практически мгновенно и длится в зависимости
от мощности ядерного боеприпаса (20-40 секунд).
Однако не смотря на кратковременность
своего воздействия эффективность действия
СИ очень высока. СИ составляет 35% от всей
мощности ядерного взрыва. Энергия светового
излучения поглощается поверхностями
освещаемых тел, которые при этом нагреваются.
Температура нагрева может быть такой,
что поверхность объекта обуглится, оплавится,
воспламенится или объект испарится. Яркость
светового излучения намного сильнее
солнечного, а образовавшийся огненный
шар при ядерном взрыве виден на сотни
километров. Так, когда 1 августа 1958 г. американцы
взорвали над островом Джонстон мегатонный
ядерный заряд, огненный шар поднялся
на высоту 145 км и был виден с расстояния
1160 км. Поражающее действие светового
излучения характеризуется световым импульсом,
т. е. количеством световой энергии, приходящейся
за время излучения на 1 см2 поверхности,
перпендикулярно расположенной к направлению
световых лучей. За единицу измерения
светового импульса принимают 1 кал/см2.
Световое излучение может вызвать ожоги
открытых участков тела, ослепление людей
и животных, обугливание или возгорание
различных материалов. Так, при световом
импульсе 2—4 кал/см2 у незащищенных людей
могут возникнуть ожоги первой степени,
при 4—6 кал/см2— ожоги второй степени
(образование пузырей), при 6— 12 кал/см2—ожоги
третьей степени (полное омертвление кожных
покровов), при световом импульсе более
12 кал/см2 кожа омертвляется на всю глубину
и обугливается. Световое излучение способно
вызвать массовые пожары в населенных
пунктах, в лесах, степях, на полях, так
как неокрашенные доски воспламеняются
при световом импульсе 40—50 кал/см2; светлая
хлопчатобумажная ткань—при 10—15 кал/см2,
сено или солома— при 4—6 кал/см2. Защитить
от светового излучения могут любые преграды,
не пропускающие свет: укрытие, тень густого
дерева, забор и т. п. Основным параметром,
определяющим поражающую способность
СИ, является световой импульс: это количество
световой энергии на единицу площади поверхности,
измеряемое в Джоулях (Дж/м2). Интенсивность
СИ с увеличением расстояния уменьшается
вследствие рассеивания и поглощения.
Интенсивность светового излучения сильно
зависит от метеорологических условий.
Туман, дождь и снег ослабляют его интенсивность,
и, наоборот, ясная и сухая погода благоприятствует
возникновению пожаров и образованию
ожогов.
Выделяются три основные зоны пожаров: Зона сплошных пожаров — 400-600 кДж/м2 (охватывает всю зону средних разрушений и часть зоны слабых разрушений). Зона отдельных пожаров —100-200 кДж/м2. (охватывает часть зоны средних разрушений и всю зону слабых разрушений). Зона пожаров в завалах — 700—1700 кДж/м2. ( Охватывает всю зону полных разрушений и часть зоны сильных разрушений). Поражение людей СИ выражается в появлении ожогов четырех степеней на кожном покрове и действием на глаза. Действие СИ на кожу вызывает ожоги: 1 – степени – краснота, припухлость, отек кожи – 100-200 кДж/м2, 2 – степени – образование пузырей – 200-400 кДж/м2, 3 – степени – образование язв и омертвление кожи – 400-600 кДж/м2 4 – степени – обугливание кожи, омертвление глубоких слоев кожи и тканей – более 600 кДж/м2. Действие СИ на глаза: Временное ослепление – до 30 мин. Ожоги роговицы и век. Ожог глазного дна – слепота. Защита ос СИ более проста, чем от других поражающих факторов, поскольку любая непрозрачная преграда может служить защитой. Полностью защищают от СИ убежища, ПРУ, перерытые быстро возводимые защитные сооружения, подземные переходы, подвалы, погреба. Для защиты зданий сооружений пользуются покраской их в светлые тона. Для защиты людей используют ткани, пропитанные огнестойкими составами, и средства для защиты глаз (очки, световые затворы).
Проникающая радиация не однородна. Классический опыт, позволяющий обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу. Вся установка размещалась в вакууме. Под действием магнитного поля пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо сильнее, чем положительный. Третья составляющая не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный – бета-лучей и нейтральный – гамма-лучей.
Поток ядерного взрыва представляет собой поток альфа, бета, гамма излучений и нейтронов. Поток нейтронов возникает вследствие деления ядер радиоактивных элементов. Альфа-лучи представляют собой поток альфа-частиц (дважды ионизированных атомов гелия), бета-лучи – поток быстрых электронов или позитронов, гамма-лучи – фотонное (электромагнитное) излучение, по своей природе и свойствам не отличающееся от рентгеновских лучей. При прохождении проникающей радиации через любую среду ее действие ослабляется. Излучение разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью. Так альфа-излучения, представляющие собой тяжелые имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия, вследствие ионизации, быстро уменьшается. Поэтому альфа-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма. Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у альфа-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма.
Гамма-излучение
обладает сравнительно небольшой ионизирующей
активностью, но в силу очень высокой
проникающей способности
При взрыве в течение очень короткого времени, измеряемого несколькими миллионными долями секунды, высвобождается огромное количество внутриядерной энергии, значительная часть которой преобразуется в тепло. Температура в зоне взрыва повышается до десятков миллионов градусов. Вследствие этого продукты деления ядерного заряда, не прореагировавшая его часть и корпус боеприпаса мгновенно испаряются и превращаются в раскаленный сильно ионизированный газ. Нагретые продукты взрыва и массы воздуха образуют огненный шар (при воздушном взрыве) или огненную полусферу (при наземном взрыве). Сразу же после образования они быстро увеличиваются в размерах, достигая в диаметре нескольких километров. При наземном ядерном взрыве они с очень большой скоростью поднимаются вверх (иногда свыше 30 км), создавая мощный восходящий поток воздуха, который увлекает с собой десятки тысяч тонн грунта с поверхности земли. С увеличением мощности взрыва возрастают размеры и степень заражения местности в район взрыва и на следе радиоактивного облака. От количества и вида грунта, попавшего в облако ядерного взрыва, зависят количество, размеры и свойства радиоактивных частиц и, следовательно, их скорость выпадения и распределение по территории. Именно поэтому при наземных и подземных взрывах (с выбросом грунта) размеры и степень заражения местности значительно больше, чем при других взрывах. При взрыве на песчаном грунте уровни радиации на следе в среднем в 2,5 раза, а площадь следа в два раза больше чем при взрыве на связанном грунте. Начальная температура грибовидного облака очень высокая, поэтому основная масса попавшего в него грунта расплавляется, частично испаряется и перемешивается с радиоактивными веществами.
Природа последних не одинакова. Это и не прореагировавшая часть ядерного заряда (уран-235, уран-233, плутоний-239), и осколки деления, и химические элементы с наведенной активностью. Примерно за 10-12 минут радиоактивное облако поднимается на максимальную высоту, стабилизируется и начинает перемещаться горизонтально в направлении движения воздушных потоков. Грибовидное облако хорошо видно на большом расстоянии в течение десятков минут. Самые крупные частицы под действием силы тяжести выпадают из радиоактивного облака и столба пыли еще до момента, когда последние достигают предельной высоты и заражают местность в непосредственной близости от центра взрыва. Легкие частицы осаждаются медленнее и на значительных расстояниях от него. Так образуется след радиоактивного облака. Рельеф местности практически не влияет на размеры зон радиоактивного заражения. Однако он обусловливает неравномерное заражение отдельных участков внутри зон. Так, возвышенности и холмы сильнее заражаются с наветренной стороны, чем с подветренной. Продукты деления, выпадающие из облака взрыва, представляют собой смесь примерно 80 изотопов 35 химических элементов средней части периодической системы элементов Менделеева (от цинка №30 до гадолиния №64).
Почти
все образующиеся ядра изотопов перегружены
нейтронами, являются не стабильными
и претерпевают бетта-распад с испусканием
гамма-квантов. Первичные ядра осколков
деления в последующем
Зона умеренного заражение – самая большая по размерам. В ее пределах население, находящееся на открытой местности, может получить в первые сутки после взрыва легкие радиационные поражения. В зоне сильного поражения опасность для людей и животных выше. Здесь возможны тяжелые радиационные поражения даже за несколько часов пребывания на открытой местности, особенно в первые сутки. В зоне опасного заражения самые высокие уровни радиации. Даже на ее границе суммарная доза облучения за время полного распада радиоактивных веществ достигает 1200 р, а уровень радиации через 1 час после взрыва составляет 240 р/ч. В первые сутки после заражения суммарная доза на границе этой зоны составляет примерно 600 р, т.е. практически она смертельна. И хотя затем дозы облучения снижаются, на этой территории пребывание людей вне укрытий опасно очень продолжительное время. Для защиты населения от РЗМ используются все имеющиеся защитные сооружения (убежища, ПРУ, подвалы многоэтажных домов, станции метрополитена). Эти защитные сооружения должны обладать достаточно высоким коэффициентом ослабления (Косл) – от 500 до 1000 и более раз, т.к. зоны радиоактивного заражения имеют высокие уровни радиации. В зонах РЗМ населению необходимо принимать радиозащитные препараты из АИ-2 (№1 и №2).
Ядерные взрывы в атмосфере и в более высоких слоях приводят к образованию мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля в виду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ). Электромагнитный импульс возникает и в результате взрыва и на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли. Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, в радиоэлектронной и радиотехнической аппаратуре. ЭМИ в указанной аппаратуре наводит электрические токи и напряжения, которые вызывают пробой изоляции, повреждение трансформаторов, сгорание разрядников, полупроводниковых приборов, перегорание плавких вставок. Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления ракетных стартовых комплексов, командных пунктов. Защита от ЭМИ осуществляется экранированием линий управления и энергоснабжения, заменой плавких вставок (предохранителей) этих линий. ЭМИ составляет 1% от мощности ядерного боеприпаса.
Защитные сооружения являются наиболее надежным средством защиты населения от аварий в районах АЭС, а также от ОМП и других современных средств нападения. Защитные сооружения в зависимости от защитных свойств подразделяются на убежища и противорадиационные укрытия (ПРУ). Кроме того, для защиты людей могут применяться простейшие укрытия.
1. Убежища -это специальные сооружения, предназначенные для защиты укрывающихся в них людей от всех поражающих факторов ядерного взрыва, отравляющих веществ, бактериальных средств, а также от высоких температур и вредных газов, образующихся при пожарах.
План убежища: 1 — защитно-герметические двери; 2 — шлюзовые камеры (тамбуры); 3 — санитарно-бытовые отсеки; 4 — основное помещение для размещения людей; 5—галерея и оголовок аварийного выхода; 6—фильтровентиляционная камера; 7—кладовая для продуктов питания; 8—медицинская комната (помещения 7 и 8 могут не устраиваться)
Убежище состоит из основного и вспомогательных помещений. В основном помещении, предназначенном для размещения укрываемых, оборудуются двух- или трехъярусные нары-скамейки для сидения и полки для лежания. Вспомогательные помещения убежища — это санитарный узел, фильтровентиляционная камера, а в сооружениях большой вместимости — медицинская комната, кладовая для продуктов, помещения для артезианской скважины и дизельной электростанции. В убежище устраивается, как правило, не менее двух входов; в убежищах малой вместимости — вход и аварийный выход. Во встроенных убежищах входы могут делаться с лестничных клеток или непосредственно с улицы. Аварийный выход оборудуется в виде подземной галереи, оканчивающейся шахтой с оголовком или люком на незаваливаемой территории. Наружная дверь делается защитно-герметической, внутренняя — герметической. Между ними располагается тамбур. В сооружениях большой вместимости (более 300 человек) при одном из входов оборудуется тамбур-шлюз, который с наружной и внутренней сторон закрывается защитно-герметическими дверями, что обеспечивает возможность выхода из убежища без нарушения защитных свойств входа. Система воздухоснабжения, как правило, работает на двух режимах: чистой вентиляции (очистка воздуха от пыли) и фильтровентиляции. В убежищах, расположенных в пожароопасных районах, дополнительно предусматривается режим полной изоляции с регенерацией воздуха внутри убежища. Системы энерговодоснабжения, отопления и канализации убежищ связаны с соответствующими внешними сетями. На случай их повреждения в убежище имеются переносные электрические фонари, резервуары для хранения аварийного запаса воды, а также емкости для сбора нечистот. Отопление убежищ предусматривается от общей отопительной сети. В помещениях убежища размещается, кроме того, комплект средств для ведения разведки, защитная одежда, средства тушения пожара, аварийный запас инструмента.
2. Противорадиационные
укрытия (ПРУ) обеспечивают
|
Дооборудование подвальных этажей и внутренних помещений зданий повышает их защитные свойства в несколько раз. Так, коэффициент защиты оборудованных подвалов деревянных домов повышается примерно до 100, каменных домов — до 800— 1000. Необорудованные погреба ослабляют радиацию в 7— 12 раз, а оборудованные — в 350—400 раз.
3. К
простейшим укрытиям относятся
щели открытые и перекрытые (рис.
3). Щели строятся самим
Щель первоначально устраивают открытой. Она представляет собой зигзагообразную траншею в виде нескольких прямолинейных участков длиной не более 15 м. Глубина ее 1,8—2 м, ширина по верху 1,1—1,2 м и по дну до 0,8 м. Длина щели определяется из расчета 0,5—0,6 м на одного человека. Нормальная вместимость щели 10—15 человек, наибольшая—50 человек. Строительство щели начинают с разбивки и трассировки — обозначения ее плана на местности. Вначале провешивается базисная линия, на ней откладывается общая длина щели. Затем влево и вправо откладываются половинные размеры ширины щели по верху. В местах изломов забиваются колышки, между ними натягиваются трассировочные шнуры и отрываются канавки глубиной 5—7 см. Рытье начинают не по всей ширине, а несколько отступив внутрь от линии трассировки. По мере углубления постепенно подравнивают откосы щели и доводят ее до требуемых размеров. В дальнейшем стенки щели укрепляют досками, жердями, камышом или другими подручными материалами. Затем щель перекрывают бревнами, шпалами или малогабаритными железобетонными плитами. Поверх покрытия настилают слой гидроизоляции, применяя толь, рубероид, хлорвиниловую пленку, или укладывают слой мятой глины, а затем слой грунта толщиной 50—60 см. Вход делают с одной или с двух сторон под прямым углом к щели и оборудуют герметической дверью и тамбуром, отделяя занавесом из плотной ткани помещение для укрываемых. Для вентиляции устанавливают вытяжной короб. Вдоль пола прорывают дренажную канавку с водосборным колодцем, расположенным при входе в щель.
Информация о работе Оружие массового поражения и основные поражающие факторы от его воздействия