Автор: Пользователь скрыл имя, 28 Февраля 2013 в 17:43, реферат
Заземляющие устройства и соединение с ними (заземление или зануление) корпусов электрооборудования выполняют для обеспечения безопасности людей, обслуживающих электроустановки и пользующихся электроэнергией на производстве и в быту. Электросети выполняют проводниками, изолированными друг от друга и от земли. Однако в сетях имеют место утечки тока через изоляцию.
Защитное отключение. Во время работы с электрифицированным инструментом рабочий неизбежно прикасается к его металлическому корпусу и переносному проводу и при неисправности их изоляции может оказаться под напряжением. В условиях строительства электроинструмент часто подключается к шинам и щиткам с плавкими вставками, рассчитанными на большой ток. Время отключения инструмента в этих случаях из-за большого сопротивления петли фаза - нуль кабеля, питающего инструмент, может достигнуть нескольких секунд и оказаться опасным.
Во избежание этого при работе
с электроинструментом, как правило,
применяют специальные защитноо
Защитноотключающие устройства изготовляют нескольких видов и в зависимости от схемы обеспечивают: контроль изоляции фаз относительно земли, контроль непрерывности цепи заземления, защиту от перехода тока фаз на нетоковедущие части, от одно- и двухфазных замыканий на землю, а также от прикосновения к незащищенным токоведущим частям.
Наиболее широко применяют защитноотключающие устройства с трансформаторами тока нулевой последовательности (ТИП) типов С-901, ИЭ-9801, ИЭ-9807, ЗОУП-25. Эти устройства обслуживают один или несколько инструментов 380/220 В и 50 Гц.
Чувствительность защиты при замыкании фазы на землю составляет 0,01 А при времени срабатывания 0,01-0,05 с.
Принцип работы указанных устройств одинаков. Рассмотрим для примера работу схемы устройства С-901 (рис.6).
При нажатии кнопки пуск К контактор Л, замыкая контакты, блокирует цепи питания трансформатора ТН и собственной катушки, и загорается сигнальная лампа. При нормальной работе электроприемника, когда изоляция фаз исправна, сумма токов нагрузки равна нулю и в цепи вторичной катушки ТИП ток отсутствует. При повреждении изоляции в одной или двух фазах относительно земли появляется ток замыкания на землю и равновесие фазных токов нарушается, вследствие чего ток во вторичной катушке ТНП через усилитель подаст импульс на реле защиты РЗ, которое сработает и обесточит нагрузку и блок питания схемы.
В случае к. з. на землю в цепи электроприемника
во вторичной катушке ТНП
Рис.6. Электрическая схема
Л - линейный контактор;
ТН - силовой трансформатор;
РЗ - реле защиты;
ЛС - сигнальная лампа;
ЛН - неоновая лампа;
ВГ - двухполупериодные выпрямители;
С , и С - конденсаторы;
Т , и Т - транзисторы-усилители;
r - r - резисторы
Нажатием кнопки контроля Кк, включенной между фазой и нулевым проводом, как бы имитируется к. з. на землю, чем проверяется исправность действия защиты и устройства в целом. Такая проверка должна выполняться при первоначальном включении электроинструмента в работу, а также при длительном перерыве.
Для обеспечения безопасности
при работе с электроинструментом
могут также применяться
Повторное заземление. На ВЛ до 1000 В с глухим заземлением нейтрали металлическая связь с нейтралью трансформатора осуществляется нулевым проводом, проложенным на тех же опорах ВЛ, что и фазные. Подсоединением к нулевому проводу осуществляется и заземление железобетонных и металлических опор на таких ВЛ.
Для повышения надежности цепи заземления на случай обрыва нулевого провода ПУЭ требуют устройства повторных заземлений нулевого провода на концах ВЛ длиной более 200 м, а также на вводах в здания, электроустановки которых подлежат занулению. Общее сопротивление растеканию повторных заземлений должно быть не более 10 Ом при напряжении 380 В, а каждого из повторных заземлителей - не более 30 Ом. При этом используют естественные заземлители, например подземные части опор, а также заземляющие устройства от грозовых перенапряжений.
Для защиты людей, находящихся в зданиях, от грозовых перенапряжений в населенных пунктах с одно-двухэтажной застройкой на ВЛ до 1000 В, не экранированных высокими зданиями, сооружениями и высокими деревьями, выполняют повторные заземляющие устройства сопротивлением не более 30 Ом по трассе ВЛ с расстоянием, не превышающим 200 м - для районов с числом грозовых часов в году до 40 и 100 м, если число этих часов более 40.
Кроме того, такие заземляющие устройства выполняют на опорах с ответвлениями к вводам в помещения, где может быть сосредоточено большое количество людей (школы, ясли, больницы) или которые представляют собой большую хозяйственную ценность (животноводческие помещения, склады, мастерские), а также на конечных опорах линий, имеющих ответвления к вводам.
Заземлители. Для заземления электроустановок в первую очередь используют естественные заземлители.
Если эти заземлители имеют сопротивление растеканию, удовлетворяющее требованиям ПУЭ, то устройство искусственных заземлителей не выполняют.
В качестве естественных заземлителей используют железобетонный фундамент зданий и сооружений, проложенные под землей водопроводные и другие металлические трубопроводы, обсадные трубы, металлические шпунты и другие металлические конструкции, имеющие соединение с землей. Исключение составляют трубопроводы для горючих жидкостей и горючих взрывчатых газов, чугунные трубопроводы и временные трубопроводы строительных площадок.
В качестве естественных заземлителей используют также свинцовые оболочки кабелей, проложенных в земле. Алюминиевые оболочки кабелей и голые алюминиевые провода использовались в качестве заземлителей запрещается.
Искусственные заземлители по их расположению в грунте и форме делят на следующие группы:
а) углубленные - из круглой или полосовой стали, укладываемые горизонтально на дно котлованов по периметру фундаментов (зданий, колонн, опор). При монтаже таких заземлителей отпадает необходимость выполнения трудоемких земляных работ и возможна предварительная заготовка элементов заземлителей.
При укладке таких заземлителей на большой глубине используют грунты с большей электрической проводимостью и менее подверженные сезонным изменениям;
б) вертикальные - из стальных вертикально ввинчиваемых или вдавливаемых в грунт стержней из круглой стали, а также из забиваемых отрезков угловой стали;
в) горизонтальные - из круглой или
полосовой стали, уложенные горизонтально
в траншею. Эти заземлители используют
и по прямому назначению, и для
связи между стержнями
В практике применяют также комбинированны
Для заземлителей обычно применяют круглую сталь диаметром 10-16 мм, полосовую сталь сечением 40Х Х4 мм и угловую сталь сечением 50X50X5 мм. Трубы для этих целей применять не рекомендуется из-за их дефицита.
Длина вертикальных заземлителей принимается
равной: ввинчиваемых и вдавливаемых
4,5-5 м, забиваемых 2,5-3 м. Вертикальные заземлители
в плане располагают в
На территориях
На территориях
В качестве заземляющих и нулевых защитных проводников используют в первую очередь нулевые рабочие проводники; специально предусмотренные для этой цели проводники; металлические конструкции зданий (фермы, колонны и т.п.); металлические конструкции производственного назначения (подкрановые пути, каркасы РУ, галерей, площадок, шахт лифтов, подъемников, элеваторов, обрамление каналов и т.п.); металлические стационарно проложенные трубопроводы различного назначения, кроме трубопроводов горючих и взрывоопасных веществ и смесей, канализации и центрального отопления; стальные трубы электропроводок; алюминиевые оболочки кабелей; металлические кожухи шинопроводов, короба и лотки электропроводок. Не допускается использовать для этих целей металлические оболочки трубчатых проводов, изоляционных трубок, металлорукавов, несущие тросы (при тросовой электропроводке), а также броню и свинцовые оболочки кабелей и проводов. В помещениях и наружных установках, в которых требуется применение заземления, эти оболочки заземляют или зануляют, обеспечивая надежное электрическое соединение их на всем протяжении.
В этих помещениях и установках с
целью выравнивания потенциала строительные
металлические конструкции, стационарные
металлические трубопроводы всех назначений,
металлические корпуса
Для стационарно проложенных
Таблица1
Наименьшие допустимые размеры стальных заземлителей и заземляющих и нулевых защитных проводников
Заземлители и заземляющие и нулевые защитные проводники |
Прокладка |
||
в зданиях |
в наружных установках |
в земле | |
Круглые проводники диаметром, мм |
5 |
6 |
10 |
Прямоугольные проводники: |
|||
сечение, мм |
24 |
48 |
48 |
толщина, мм |
3 |
4 |
4 |
Угловая сталь (толщина полок), мм |
2 |
2,5 |
4 |
Стальные трубы (толщина стенок), мм: |
|||
водогазопроводные |
2,5 |
2,5 |
3,5 |
тонкостенные |
1,5 |
2,5 |
Не допускается |
В электроустановках напряжением до 1000 В и выше с изолированной нейтралью проводимость заземляющих проводников должна составлять не менее 1/3 проводимости фазных проводников, а сечение - не менее указанных в табл.1 и 2.
В производственных помещениях с электроустановками напряжением до 1000 В магистрали заземления из стальной полосы применяют сечением не менее 100 мм , а напряжением выше 1000 В - не менее 120 мм (допускается применение круглой стали той же проводимости).
Таблица2
Наименьшие допустимые сечения медных и алюминиевых заземляющих и нулевых защитных проводников в электроустановках до 1000 В
Заземляющие и нулевые защитные проводники |
Медь ,мм |
Алюминий, мм |
Неизолированные проводники при открытой прокладке |
4 |
6 |
Изолированные провода |
1,5 |
2,5 |
Заземляющие жилы кабелей или многожильных проводов в общей защитной оболочке с фазными жилами |
1 |
2,5 |