Инвестиционная деятельность

Автор: Пользователь скрыл имя, 15 Апреля 2012 в 12:12, реферат

Описание работы

В работе будут рассмотрены следующие вопросы:
• основные принципы, положенные в основу анализа инвестиционных проектов;
• критерии оценки экономической эффективности инвестиционных проектов, в том числе показатели чистого приведенного дохода, рентабельности капиталовложений, внутренней нормы прибыли;
• проблемы учета инфляции и риска;
• сравнительная характеристика показателей чистого приведенного дохода и внутренней нормы прибыли;
• методика анализа инвестиционных проектов различной продолжительности

Содержание

ВВЕДЕНИЕ 2
ГЛАВА 1. ОСНОВНЫЕ ПРИНЦИПЫ АНАЛИЗА ИНВЕСТИЦИОННЫХ ПРОЕКТОВ 3
ГЛАВА 2. АНАЛИЗ ЭФФЕКТИВНОСТИ ИНГВЕСТИЦИОННЫХ ПРОЕКТОВ 4
§ 1. ЧИСТЫЙ ПРИВЕДЕННЫЙ ДОХОД 4
§ 2. РЕНТАБЕЛЬНОСТЬ КАПИТАЛОВЛОЖЕНИЙ 6
§ 3. ВНУТРЕННЯЯ НОРМА ПРИБЫЛИ 6
§ 4. УЧЕТ ВЛИЯНИЯ ИНФЛЯЦИИ И РИСКА 9
§ 5. СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА КРИТЕРИЕВ NPV И IRR 13
§ 6. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОЕКТОВ РАЗЛИЧНОЙ ПРОДОЛЖИТЕЛЬНОСТИ 18
ГЛАВА 3. ПРОБЛЕМЫ ОПТИМИЗАЦИИ БЮДЖЕТА КАПИТАЛОВЛОЖЕНИЙ 20
§ 1. ПРОСТРАНСТВЕННАЯ ОПТИМИЗАЦИЯ 20
§ 2. ВРЕМЕННАЯ ОПТИМИЗАЦИЯ 23
§ 3. ОПТИМИЗАЦИЯ В УСЛОВИЯХ РЕИНВЕСТИРОВАНИЯ ДОХОДОВ 25
ЗАКЛЮЧЕНИЕ 26
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 29

Работа содержит 1 файл

004. инвестиции.DOC

— 181.98 Кб (Скачать)

Таблица F

Если исходить из критерия IRR, то оба проекта и в ситуации а), и в ситуации б) являются приемлемыми и равноправными. Но так ли это? Построим графики функции NPV = f(r) для обоих проектов.

               NPV

 

 

 

 

 

 

 

                                                     Точка Фишера

 

 

 

                                                          Проект В                                        Проект А         r

Рисунок B. Нахождение точки Фишера

Точка пересечения двух графиков (r = 9,82%), показывающая значение коэффициента дисконтирования, при котором оба проекта имеют одинаковый NPV, называется точкой Фишера. Она примечательна тем, что служит пограничной точкой, разделяющей ситуации, которые "улавливаются" критерием NPV и не "улавливаются" критерием IRR.

В данном примере критерий IRR не только не может расставить приоритеты между проектами, но и не показывает различия между ситуациями а) и б). Напротив, критерий NPV позволяет расставить приоритеты в любой ситуации. Более того, он показывает, что ситуации а) и б) принципиально различаются между собой. А именно, в случае (а) следует принять проект А, поскольку он имеет больший NPV, в случае б) следует отдать предпочтение проекту В. Отметим, что точка Фишера для потоков А и В может быть найдена как IRR приростного потока (А-В) или, что то же самое, (В - А).

5. Одним из существенных недостатков критерия IRR является то, что в отличие от критерия NPV он не обладает свойством аддитивности, т.е. для двух инвестиционных проектов А и В, которые могут быть осуществлены одновременно:

           NPV (A+B) = NPV (A) + NPV (B),

но       IRR (A + В) ¹ IRR (A) + IRR(B).

Пример J

Проанализируем целесообразность инвестирования в проекты А, В, С при условии, что проекты В и С являются альтернативными, а проект А - независимым. Цена инвестированного капитала составляет 10%.

Исходя из условия примера необходимо проанализировать несколько сценариев:

а) целесообразность принятия каждого из проектов в отдельности (А, В или С);

б) целесообразность принятия комбинации проектов (А+В) и (А+С).

Результаты анализа приведены в таблице 7.

(млн руб.)

Проект

Величина инвестиций

Денежный поток по годам

IRR, %

NPV при 10%

 

 

1

2

 

 

А

50

100

20

118,3

57,4

В

50

20

120

76,2

67,4

С

50

90

15

95,4

44,2

А + В

100

120

140

97,2

124,8

А + С

100

190

35

106,9

101,6

Таблица G. Анализ комбинации инвестиционных проектов

Из приведенных расчетов видно, что все три исходных проекта являются приемлемыми, поэтому необходимо проанализировать возможные их комбинации. По критерию IRR относительно лучшей является комбинация проектов А и С, однако такой вывод не вполне корректен, поскольку резерв безопасности в обоих случаях весьма высок, но другая комбинация дает большее возможное увеличение капитала компании.

6. В принципе не исключена ситуация, когда критерий IRR не с чем сравнивать. Например, нет основания использовать в анализе постоянную цену капитала. Если источник финансирования - банковская ссуда с фиксированной процентной ставкой, цена капитала не меняется, однако чаще всего проект финансируется из различных источников, поэтому для оценки используется средневзвешенная цена капитала фирмы, значение которой может варьировать в зависимости, в частности, от общеэкономической ситуации, текущих прибылей и т.п.

7. Критерий IRR совершенно непригоден для анализа неординарных инвестиционных потоков (название условное). В этом случае возникает как множественность значений IRR, так и неочевидность экономической интерпретации возникающих соотношений между показателем IRR и ценой капитала. Возможны также ситуации, когда положительного значения IRR попросту не существует.

 

§ 6.        Сравнительный анализ проектов различной продолжительности

Довольно часто в инвестиционной практике возникает потребность в сравнении проектов различной продолжительности[3].

Пусть проекты А и Б рассчитаны соответственно на i и j лет. В этом случае рекомендуется:

    найти наименьшее общее кратное сроков действия проектов - N;

    рассматривая каждый из проектов как повторяющийся, рассчитать с учетом фактора времени суммарный NPV проектов А и В, реализуемых необходимое число раз в течение периода N;

    выбрать тот проект из исходных, для которого суммарный NPV повторяющегося потока имеет наибольшее значение.

Суммарный NPV повторяющегося потока находится по формуле:

                                              1               1              1                    1  

NPV (i, n) = NPV(i) (1 + ——— + ——— + ——— +...+————),

                                          (1+r)i       (1+r)2i       (1+r)3i           (1+r)N-i

где NPV (i) - чистый приведенный доход исходного проекта;

i- продолжительность этого проекта;

r - коэффициент дисконтирования в долях единицы;

N  - наименьшее общее кратное;

n - число повторений исходного проекта (оно характеризует число слагаемых в скобках).

Пример K

В каждой из двух приведенных ниже ситуаций требуется выбрать наиболее предпочтительный проект (в млн руб.), если цена капитала составляет 10%:

а) проект А: -100,  50,  70; проект В: -100,  30,  40,  60;

б) проект С: -100,  50,  72; проект В: -100,  30,  40,  60.

Если рассчитать NPV для проектов А, В и С, то они составят соответственно: 3,30 млн руб., 5,4 млн руб., 4,96 млн руб. Непосредственному сравнению эти данные не поддаются, поэтому необходимо рассчитать NPV приведенных потоков. В обоих вариантах наименьшее общее кратное равно 6. В течение этого периода проекты А и С могут быть повторены трижды, а проект В - дважды.

В случае трехкратного повторения проекта А суммарный NPV равен 8,28 млн руб.:

NPV = 3,30 + 3,30 / (1+0,1)2+3,30 / (1+0,1)4 = 3,30 + 2,73 +2,25 = 8,28,

где 3,30 - приведенный доход 1-ой реализации проекта А;

2,73 - приведенный доход 2-ой реализации проекта А;

2,25 - приведенный доход 3-ей реализации проекта А.

Поскольку суммарный NPV в случае двукратной реализации проекта В больше (9,46 млн руб.), проект В является предпочтительным.

Если сделать аналогичные расчеты для варианта (б), получим, что суммарный NPV в случае трехкратного повторения проекта С составит 12,45 млн руб. (4,96 + 4,10 + 3,39). Таким образом, в этом варианте предпочтительным является проект С.

 

Метод бесконечного цепного повтора сравниваемых проектов

Рассмотренную выше методику можно упростить в вычислительном плане. Так, если анализируется несколько проектов, существенно различающихся по продолжительности реализации, расчеты могут быть достаточно сложными. Их можно упростить, если предположить, что каждый из анализируемых проектов может быть реализован неограниченное число раз. В этом случае n®¥ число слагаемых в формуле расчета NPV(i, n) будет стремиться  к бесконечности, а значение NPV(i, ¥) может быть найдено по формуле для бесконечно убывающей геометрической прогрессии:

                                                              (1+r)i

NPV(i, ¥)= lim NPV(i, n) = NPV(i) ————.

                     n®¥                               (1+r)i-1

 

Из двух сравниваемых проектов проект, имеющий большее значение NPV(i, ¥), является предпочтительным.

Так, для рассмотренного выше примера:

вариант а):

проект А: i = 2, поэтому

NPV(2, ¥) = 3,3 (1+0,1)2/((1+0,1)2-1) = 3,3×5,76 = 19,01 млн руб.;

проект В: i = 3, поэтому

NPV(3, ¥) = 5,4 (1+0,1)3/((1+0,1)3-1) = 5,4×4,02=21,71 млн руб.;

вариант б):

проект В: NPV(3, ¥) = 21,71 млн руб.,

проект С: NPV(2, ¥) = 28,57 млн руб.

Таким образом, получены те же самые результаты: в варианте а) предпочтительнее проект В; в варианте б) предпочтительнее проект С.

 

Ãëàâà 3.     Проблемы оптимизации бюджета капиталовложений

Довольно часто при составлении бюджета капитальных вложений приходится учитывать ряд ограничений. Например, имеется нескопько привлекательных инвестиционных проектов, однако предприятие из-за ограниченности  в финансовых ресурсах не может осуществить их все одновременно. В этом случае необходимо отобрать для реализации проекты так, чтобы получить максимальную выгоду от инвестирования.  Как правило, основной целевой установкой в подобных случаях является максимизация суммарного NPV. Рассмотрим наиболее типовые ситуации, требующие оптимизации распределения инвестиций. Более сложные задачи оптимизации инвестиционных портфелей решаются с помощью методов линейного программирования.

 

§ 1.        Пространственная оптимизация

Пространственная оптимизация бюджета капиталовложений проводится при наличии определенных условий:

    общая сумма финансовых ресурсов на конкретный период (например, год) ограничена сверху;

    имеется несколько независимых проектов с суммарным объемом требуемых инвестиций, превышающим имеющиеся у предприятия ресурсы;

    требуется составить инвестиционный портфель, максимизирующий суммарный возможный прирост капитала.

На первый взгляд, в портфель нужно включить все проекты с максимальным значением NPV. Такое решение является самым простым, но не обязательно оптимальным. Кроме того, если число конкурирующих проектов велико, то перебор вариантов на предмет соответствия ограничению по объему суммарных инвестиций может быть достаточно утомительным.

В зависимости от того, поддаются дроблению рассматриваемые проекты или нет, возможны различные способы решения данной задачи. Рассмотрим их последовательно.

 

Рассматриваемые проекты поддаются дроблению

Допустим, что рассматриваемые проекты поддаются дроблению, т. е. можно реализовать не только полностью каждый из анализируемых проектов, но и любую его часть (при этом берется к рассмотрению соответствующая доля инвестиций и денежных поступлений). Так как в этом случае объем инвестиций по любому проекту может быть сколь угодно малым, максимальный суммарный эффект достигается при наибольшей эффективности использования вложенных средств. Выше отмечалось, что критерием, характеризующим эффективность использования каждого инвестированного рубля, является показатель РI. При прочих равных условиях проекты, имеющие наибольшие значения РI, являются более предпочтительными с позиции отдачи на инвестированный капитал.

Порядок оптимизации следующий:

    для каждого проекта рассчитывается PI;

    проекты упорядочиваются по убыванию РI;

    в инвестиционный портфель включаются первые k проектов, которые в сумме в полном объеме могут быть профинансированы предприятием;

    очередной проект берется не в полном объеме, а лишь в той части, в которой он может быть профинансирован.

Рассмотрим пример.

Пример L

Предприятие имеет возможность инвестировать а) до 55 млн руб.; б) до 90 млн руб., при этом цена источников финансирования составляет 10%. Требуется составить оптимальный инвестиционный портфель, если имеются следующие альтернативные проекты:

проект А: -30,    6,    11,    13,    12;

проект В: -20,    4,     8,     12,     5;

проект С: -40,   12,   15,    15,    15;

проект D: -15,    4,     5,     6,      6.

Рассчитаем чистый приведенный доход (NPV) и индекс рентабельности (РI) для каждого проекта:

проект А: NPV = 2,51; PI = 1,084; IRR = 13,4%

проект В: NPV = 2,68; PI = 1,134; IRR = 15,6%

проект С: NPV = 4,82; PI = 1,121; IRR = 15,3%

проект D: NPV = 1,37; PI = 1,091; IRR = 13,9%.

Таким образом, по убыванию показателя PI проекты упорядочиваются следующим образом: B, C, D, A.

Наиболее оптимальная структура бюджета капиталовложений для варианта (а) представлена в таблице 8:

Проект

Величина инвестиций

Часть инвестиций, включаемая в портфель, %

NPV

В

20

100,0

2,68

С

35

87,5

4,22

Всего

55

 

6,90

Информация о работе Инвестиционная деятельность