Автор: Пользователь скрыл имя, 11 Ноября 2011 в 12:33, контрольная работа
1.Проводная связь
Проводная связь- система электросвязи, в которой передача информации производится по кабелю связи. Охватывает телефонную, телеграфную, факсимильную связь. Линии проводной связи используются также для передачи программ звукового и телевизионного вещания.
Многоканальная связь
Многоканальная связь- система электросвязи, обеспечивающая одновременную и независимую передачу сообщений от нескольких отправителей к такому же числу получателей.
Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.
Оптический
передатчик в волоконно-оптической
системе преобразовывает
Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.
Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.
Основной
его задачей является подача тока
смещения и модулирующего тока для
прямого модулирования
При достаточно малом диаметре волокна и соответствующей длине волны через световод будет распространяться единственный луч. Вообще сам факт подбора диаметра сердечника под одномодовый режим распространения сигнала говорит о частности каждого отдельного варианта конструкции световода. То есть под одномодовостью следует понимать характеристики волокна относительно конкретной частоты используемой волны. Распространение лишь одного луча позволяет избавиться от межмодовой дисперсии, в связи с чем одномодовые световоды на порядки производительнее. На данный момент применяется сердечник с внешним диаметром около 8 мкм. Как и в случае с многомодовыми световодами, используется и ступенчатая, и градиентная плотность распределения материала.
Второй вариант более производительный. Одномодовая технология более тонкая, дорогая и применяется в настоящее время в телекоммуникациях. Оптическое волокно используется в волоконно-оптических линиях связи, которые превосходят электронные средства связи тем, что позволяют без потерь с высокой скоростью транслировать цифровые данные на огромные расстояния. Оптоволоконные линии могут как образовывать новую сеть, так и служить для объединения уже существующих сетей — участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически — на уровне протоколов передачи данных. Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду. Уже сейчас дорабатывается стандарт, позволяющий передавать данные со скоростью 100 Гбит/c, а стандарт 10 Гбит Ethernet используется в современных телекоммуникационных структурах уже несколько лет.
В многомодовом ОВ может распространяться одновременно большое число мод – лучей, введенных в световод под разными углами. Многомодовое ОВ обладает относительно большим диаметром сердцевины (стандартные значения 50 и 62,5 мкм) и, соответственно, большой числовой апертурой. Больший диаметр сердцевины многомодового волокна упрощает ввод оптического излучения в волокно, а более мягкие требования к допустимым отклонениям для многомодового волокна позволяют уменьшить стоимость оптических приемо-передатчиков. Таким образом, многомодовое волокно преобладает в локальных и домашних сетях небольшой протяженности.
Основным недостатком многомодового ОВ является наличие межмодовой дисперсии, возникающей из-за того, что разные моды проделывают в волокне разный оптический путь. Для уменьшения влияния этого явления было разработано многомодовое волокно с градиентным показателем преломления, благодаря чему моды в волокне распространяются по параболическим траекториям, и разность их оптических путей, а, следовательно, и межмодовая дисперсия существенно меньше. Однако насколько не были бы сбалансированы градиентные многомодовые волокна, их пропускная способность не сравнится с одномодовыми технологиями.
Чтобы
передать данные через оптические каналы,
сигналы должны быть преобразованы
из электрического вида в оптический,
переданы по линии связи и затем
в приёмнике преобразованы
Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.
Стандарт SONET | Стандарт SDH | Скорость передачи |
OC 1 | — | 51,84 Мб/сек |
OC 3 | STM 1 | 155,52 Мб/сек |
OC 12 | STM 4 | 622,08 Мб/сек |
OC 48 | STM 16 | 2,4883 Гб/сек |
OC 192 | STM 64 | 9,9533 Гб/сек |
Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.
Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.
Определение: технологии передачи информации через оптические волокна.
Оптоволокно может быть использовано для передачи света и таким образом информации на дальние расстояния. Волоконные системы в значительной степени заменили системы радиопередач. Они широко используются для телефонии, для интернет трафика, высокоскоростных локальных сетей (LAN), для кабельного телевидения, и все чаще для коротких расстояний. В большинстве случаев, используется кварцевое оптоволокно, за исключением очень коротких расстояниях, где пластиковое оптоволокно выгоднее.
По сравнению с системами на базе электрических кабелей, подход оптоволоконной связи (световой связи) имеет преимущества, наиболее важными из которых являются:
-
Способность волокна для
-
Потери при распространении
-
Большое количество каналов
-
Из-за достижения огромной
- По сравнению с электрическими кабелями, оптоволоконные кабели очень легкие, так что стоимость прокладки оптоволокна ниже.
-
Оптоволоконные кабели
Однако волоконные системы являются более сложными в установке и эксплуатации, так что они, как правило, менее экономичные, если, конечно, не требуется полная мощность передачи. Таким образом, «последняя миля» (канал, соединяющий конечное (клиентское) оборудование с узлом доступа провайдера) подключается через электрические кабели . Постепенно оптоволоконную связь, используются в метрополитенах, и даже волокна в дом разрабатываются, в частности, в Японии, где частные интернет-пользователи уже могут получить доступное подключение к Интернету со скоростью передачи данных до 100 Мбит / с - также выше чем производительность существующих систем ADSL, которые используют электрические телефонные линии.
Окно прозрачности — диапазон длин волн оптического излучения, в котором имеет место меньшее, по сравнению с другими диапазонами, затухание излучения в среде, в частности — в оптическом волокне
- Первое окно прозрачности на 800-900 нм. Лазерные диоды и светодиоды (LED) на GaAs / AlGaAs основе выступали в качестве передатчиков, и кремниевые фотодиоды были пригодны для приемников. Однако потери волокна являются относительно высокими в этом регионе, и волоконные усилители не очень хорошо разработаны для этой области спектра. Таким образом, первое окно прозрачности подходит только для передачи на короткие расстояния.
- Второе окно использует длину волны около 1,3 мкм, где потери кварцевых волокон гораздо ниже, и хроматическая дисперсия волокон является очень малой, так что дисперсионные расширение импульсов сводится к минимуму. Это окно изначально использовалось для передачи данных на дальние расстояния. Однако, волоконные усилители на 1,3 мкм (на основе, например, на стекла, легированного празеодимом) не так хороши, как их 1,5-мкм коллеги на основе эрбия. Кроме того, низкая дисперсия не обязательно идеально подходит для дальних передач, так как это может увеличить эффект оптической нелинейности.