Автор: Пользователь скрыл имя, 15 Января 2012 в 09:05, статья
Мы все чаще слышим слова нанонаука, нанотехнология, наноструктурированные материалы и объекты. Отчасти они уже вошли в повседневную жизнь, ими обозначают приоритетные направления научно-технической политики в развитых странах . Так, в США действует программа “Национальная нанотехнологическая инициатива” (в 2001 г. ее бюджет был 485 млн долл., что сопоставимо с годовым бюджетом всей Российской академии наук). Евросоюз недавно принял шестую рамочную программу развития науки, в которой нанотехнологии занимают главенствующие позиции. Минпромнауки РФ и РАН также имеют перечни приоритетных, прорывных технологий с приставкой “нано-”.
Кантилеверы, создававшиеся первоначально для нужд атомно-силовой микроскопии, демонстрируют высокую чувствительность не только к приложенным силам, но и к химическим реакциям на поверхности, магнитному полю, теплу, свету. Массивы кантилеверов из кремния, получаемые хорошо разработанными в полупроводниковой промышленности технологиями и содержащие несколько десятков (а иногда и сотен) отдельных датчиков, позволяют реализовать на одном чипе функции “электронного носа” или “электронного языка” для химического анализа газов и жидкостей, воздуха, продуктов питания. Так, разработан сенсор, представляющий собой кантилевер с “пришитой” химически биомолекулой на кончике острия. Эта молекула (например, антитело или энзим) может селективно вступать в химическое взаимодействие только с избранными веществами, которые могут находиться в многокомпонентном растворе. Захват определенной молекулы из раствора и связывание ее на кончике острия приводит к изменению резонансной частоты кантилевера на известную величину, что расценивается как доказательство присутствия детектируемых молекул в пробе. Легко понять, что чувствительность и избирательность таких сенсоров позволяет обнаруживать и регистрировать отдельные молекулы в растворе!
Отметилась зондовая техника и среди претендентов, обещающих повысить плотность записи информации. В частности, компания IBM финансирует проект “Millipede” (от лат. - тысяченожка), возглавляемый одним из нобелевских лауреатов 1986 г. Биннингом. Первоначально в качестве прототипа использовали модифицированный атомно-силовой микроскоп, который наносил на поверхность пластика отпечатки путем наноиндентирования. Однако для этого нужен весьма жесткий и массивный кантилевер, что делает процесс записи и считывания малопроизводительным. В проекте для увеличения производительности предлагается использовать одновременно несколько тысяч кантилеверов, собранных в матрицу (опытный образец имеет 1024 острия, размещенных на площади 3ґ3 мм2). Каждый кантилевер имеет длину 70 мкм, ширину 10 мкм и толщину 0.5 мкм. На его свободном конце сформировано острие высотой 1.7 мкм и радиусом в вершине менее 20 нм. Для уменьшения требуемых при наноиндентировании усилий, снижения массы кантилевера и увеличения стойкости острия последнее нагревают короткими импульсами тока до 300-400°С, что локально размягчает пластиковую пленку, на которую записывается информация. В процессе доводки - матрица 64ґ64 острия на площади около 7 мм2. Она имеет общую производительность несколько сотен Мбайт/с как при записи, так и при считывании.
Биннинг с оптимизмом заявляет, что за несколько лет группа надеется преодолеть терабитный барьер (имеется в виду ~Тбайт/дюйм2) и приблизиться к атомной плотности записи (~103 Тбайт/см2), что в принципе достижимо методами атомно-силовой микроскопии. Заметим, что помимо IBM и другие компании (“Hewlett-Packard”, “Hitachi”, “Philips”, “Nanochip”) ведут интенсивные разработки устройств со сверхвысокой плотностью записи. Так что сейчас трудно сказать, какие из этих продуктов ждет коммерческий успех. Но интуиции нобелевских лауреатов, видимо, стоит доверять, как это делают такие гиганты, как IBM.
Итак,
зондовые методы стали универсальным
средством исследования, атомарного
дизайна, проведения химических реакций
между двумя выбранными атомами
(молекулами), записи и хранения информации
с предельно возможным в
Что впереди?
Дальнейшее развитие нанотехнологии предусматривает переход от отдельных элементов и их сборок к интегрированию сенсорной, логически-аналитической, двигательной и исполнительной функции в одном устройстве. Первый шаг в этом направлении - создание микро-нано-электромеханических систем (MEMS/NEМS). И наноострия, и нанокантилеверы, и просто нанопроводники могут быть очень чувствительными и селективными сенсорами, расположенными на одном чипе с электроникой. К ним можно добавить нанонасосы, и в результате получится аналитическая химическая лаборатория, размещающаяся на пластине площадью ~1 см2. Существуют уже анализаторы боевых отравляющих веществ, биологического оружия, искусственный нос и искусственный язык для аттестации пищевых продуктов (вин, сыров, фруктов, овощей).
Министерство обороны США, например, финансирует программу создания “Smart dust” - умной пыли, т.е. большого семейства микророботов, размером в пылинку, которые смогут, рассыпавшись над территорией противника, проникать во все щели, каналы связи, создавать свою сеть, собирать и передавать оперативную информацию, проводить спецоперации и т.д.
Есть
и более гуманистические
Ключевые
технологии и материалы всегда играли
большую роль в истории цивилизации,
выполняя не только узко производственные
функции, но и социальные. Достаточно
вспомнить, как сильно отличались каменный
и бронзовый века, век пара и
век электричества, атомной энергии
и компьютеров. По мнению многих экспертов,
XXI в. будет веком нанонауки и нанотехнологий,
которые и определят его лицо. Воздействие
нанотехнологий на жизнь обещает иметь
всеобщий характер, изменить экономику
и затронуть все стороны быта, работы,
социальных отношений. С помощью нанотехнологий
мы сможем экономить время, получать больше
благ за меньшую цену, постоянно повышать
уровень и качество жизни.