Управление вводом-выводом в операционных системах. Структура функций ввода-вывода. Буферизация

Автор: Пользователь скрыл имя, 23 Декабря 2012 в 12:28, реферат

Описание работы

Одной из главных функций ОС является управление всеми устройствами ввода-вывода компьютера. ОС должна передавать устройствам команды, перехватывать прерывания и обрабатывать ошибки; она также должна обеспечивать интерфейс между устройствами и остальной частью системы. В целях развития интерфейс должен быть одинаковым для всех типов устройств (независимость от устройств). Назначением системы ввода-вывода является обеспечение обмена информацией между внешними (периферийными) устройствами и оперативной памятью.

Работа содержит 1 файл

реферат.doc

— 161.50 Кб (Скачать)

Ко второй группе относятся  не блокирующиеся системные вызовы. Их название не совсем точно отражает суть дела. В простейшем случае, процесс, применивший не блокирующийся вызов, не переводится в состояние ожидание вообще. Системный вызов возвращается немедленно, выполнив предписанные ему операции ввода-вывода полностью, частично или не выполнив совсем, в зависимости от текущей ситуации (состояния устройства, наличия данных и т.д.). В более сложных ситуациях процесс может блокироваться, но условием его разблокирования является завершение всех необходимых операций или окончание некоторого промежутка времени. Типичным случаем применения не блокирующегося системного вызова может являться периодическая проверка на поступление информации с клавиатуры при выполнении трудоемких расчетов.

К третьей группе относятся  асинхронные системные вызовы. Процесс, использовавший асинхронный системный  вызов, никогда в нем не блокируется. Системный вызов инициирует выполнение необходимых операций ввода-вывода и немедленно возвращается, после чего процесс продолжает выполнять свою регулярную деятельность. Об окончании завершения операции ввода-вывода операционная система впоследствии информирует процесс изменением значений некоторых переменных, передачей ему сигнала или сообщения, или каким-либо еще способом. Необходимо четко понимать разницу между не блокирующимися и асинхронными вызовами. Не блокирующийся системный вызов для выполнения операции read вернется немедленно, но может прочитать запрошенное количество байт, меньшее количество или вообще ничего. Асинхронный системный вызов для этой операции также вернется немедленно, но требуемое количество байт рано или поздно будет прочитано в полном объеме.

 

Общие сведения об архитектуре компьютера

В простейшем случае процессор, память и многочисленные внешние  устройства связаны большим количеством  электрических соединений - линий, которые  в совокупности принято называть локальной магистралью компьютера. Внутри локальной магистрали линии, служащие для передачи сходных сигналов и предназначенные для выполнения сходных функций, принято группировать в шины. При этом понятие шины включает в себе не только набор проводников, но и набор жестко заданных протоколов, определяющий перечень сообщений, который может быть передан с помощью электрических сигналов по этим проводникам. В современных компьютерах выделяют, как минимум, три шины:

- Шину данных, состоящую из линий данных и служащую для передачи информации между процессором и памятью, процессором и устройствами ввода-вывода, памятью и внешними устройствами.

- Адресную шину, состоящую из линий адреса и служащую для задания адреса ячейки памяти или указания устройства ввода-вывода, участвующих в обмене информацией.

- Шину управления, состоящую из линий управления локальной магистралью и линий ее состояния, определяющих поведение локальной магистрали. В некоторых архитектурных решениях линии состояния выносятся из этой шины в отдельную шину состояния.

Количество линий, входящих в состав шины, принято называть разрядностью (шириной) этой шины. Ширина адресной шины, например, определяет максимальный размер оперативной памяти, которая может быть установлена в вычислительной системе. Ширина шины данных определяет максимальный объем информации, которая за один раз может быть получена или передана по этой шине.

Операции обмена информацией осуществляются при одновременном участии всех шин. Рассмотрим, к примеру, действия, которые должны быть выполнены для  передачи информации из процессора в  память. В простейшем случае необходимыми являются три действия:

- На адресной шине процессор должен выставить сигналы, соответствующие адресу ячейки памяти, в которую будет осуществляться передача информации.

- На шину данных процессор должен выставить сигналы, соответствующие информации, которая должна быть записана в память.

- После выполнения действий 1 и 2 на шину управления выставляются сигналы, соответствующие операции записи и работе с памятью, что приведет к занесению необходимой информации по требуемому адресу.

Естественно, что приведенные выше действия являются необходимыми, но недостаточными при рассмотрении работы конкретных процессоров и микросхем памяти. Конкретные архитектурные решения могут требовать дополнительных действий, например, выставления на шину управления сигналов частичного использования шины данных (для передачи меньшего количества информации, чем позволяет ширина этой шины), выставления сигнала готовности магистрали после завершения записи в память, разрешающего приступить к новой операции, и т.д., однако общие принципы выполнения операции записи в память остаются одинаковыми.

В то время как память легко можно  представить себе в виде последовательности пронумерованных адресами ячеек, локализованных внутри одной микросхемы или набора микросхем, подобный подход неприменим к устройствам ввода-вывода. Внешние устройства разнесены пространственно и могут подключаться к локальной магистрали в одной точке или множестве точек, получивших название портов ввода-вывода. Тем не менее, точно так же, как ячейки памяти взаимно однозначно отображались в адресное пространство памяти, порты ввода-вывода можно взаимно однозначно отобразить в другое адресное пространство – адресное пространство ввода-вывода. При этом каждый порт ввода-вывода получает свой номер или адрес в этом пространстве. В некоторых случаях, когда адресное пространство памяти (размер которого определяется шириной адресной шины) задействовано не полностью (остались адреса, которым не соответствуют физические ячейки памяти), и протоколы работы с внешним устройством совместимы с протоколами работы с памятью, часть портов ввода-вывода может быть отображена непосредственно в адресное пространство памяти (так, например, поступают с видеопамятью дисплеев), правда тогда эти порты уже не принято называть портами. Надо отметить, что при отображении портов в адресное пространство памяти для организации доступа к ним в полной мере могут быть задействованы существующие механизмы защиты памяти без организации специальных защитных устройств.

В ситуации прямого отображения  портов ввода-вывода в адресное пространство памяти действия, требуемые для записи информации и управляющих команд в эти порты или для чтения данных из них и их состояний, ничем не отличаются от действий, производимых для передачи информации между оперативной памятью и процессором, и для их выполнения применяются те же самые команды. Если же порт отображен в адресное пространство ввода-вывода, то процесс обмена информацией инициируется специальными командами ввода-вывода и включает в себя несколько другие действия. Например, для передачи данных в порт необходимо выполнить следующее:

на адресной шине процессор должен выставить сигналы, соответствующие адресу порта, в который будет осуществляться передача информации, в адресном пространстве ввода-вывода;

на шину данных процессор должен выставить сигналы, соответствующие информации, которая должна быть передана в порт;

после выполнения действий 1 и 2 на шину управления выставляются сигналы, соответствующие операции записи и работе с устройствами ввода-вывода (переключение адресных пространств!), что приведет к передаче необходимой информации в требуемый порт.

Существенным отличием памяти от устройств ввода-вывода является то, что занесение информации в  память является окончанием операции записи, в то время как занесение информации в порт зачастую является инициализацией реального совершения операции ввода-вывода. Что именно должны совершать устройства, приняв информацию через свой порт, и каким именно образом они должны поставлять информацию для чтения из порта, определяется электронными схемами устройств, получившими названия контроллеров. Контроллер может непосредственно управлять отдельным устройством (например, контроллер диска), а может управлять несколькими устройствами, связываясь с их контроллерами посредством специальных шин ввода-вывода (шина IDE, шина SCSI и т.д.). Именно единообразие подключения внешних устройств к вычислительной системе является одной из составляющих идеологии, позволяющих добавлять новые устройства без перепроектирования всей системы.

Структура контроллера устройства

Контроллеры устройств  ввода-вывода весьма различны как по своему внутреннему строению, так  и по исполнению (от одной микросхемы до специализированной вычислительной системы со своим процессором, памятью  и т. д.), поскольку им приходится управлять совершенно разными приборами. Не вдаваясь в детали этих различий, мы выделим некоторые общие черты контроллеров, необходимые им для взаимодействия с вычислительной системой. Обычно каждый контроллер имеет, по крайней мере, четыре внутренних регистра, называемых регистрами состояния, управления, входных данных и выходных данных. Для доступа к содержимому этих регистров вычислительная система может использовать один или несколько портов, что не существенно для нас. Для простоты изложения будем считать, что каждому регистру соответствует свой собственный порт.

Регистр состояния содержит биты, значение которых определяется состоянием устройства ввода-вывода, и которые доступны только для чтения вычислительной системой. Эти биты индицируют завершение выполнения текущей команды на устройстве (бит занятости), наличие очередного данного в регистре выходных данных (бит готовности данных), возникновения ошибки при выполнении команды (бит ошибки) и т.д.

Регистр управления получает данные, которые записываются вычислительной системой для инициализации устройства ввода-вывода или выполнения очередной команды, а также изменения режима работы устройства. Часть битов в этом регистре может быть отведена под код выполняемой команды, часть битов кодировать режим работы устройства, бит готовности команды свидетельствует о том, что можно приступить к ее выполнению.

Регистр выходных данных служит для помещения в него данных для чтения вычислительной системой, а регистр входных данных предназначен для помещения в него информации, которая должна быть выведена на устройство. Обычно емкость этих регистров не превышает ширину линии данных (а чаще всего меньше ее), хотя некоторые контроллеры могут использовать в качестве регистров очередь FIFO для буферизации поступающей информации.

 

 

 

Способы подключения  устройств

При всем многообразии внешних  устройств ЭВМ и способов управления ими их программные интерфейсы могут  быть сведены к трем основным моделям, определяющимся способом подключения  устройств к ЭВМ:

- регистры устройств;

- контроллеры ввода-вывода;

- прямой доступ к памяти;

- каналы ввода-вывода;

- процессоры ввода-вывода.

Устройство может быть подключено к процессору через регистры устройства, как показано на Рисунке 6.1. Такое подключение применяется  для устройств, которые имеют простое управление, и обмен с ними ведется небольшими порциями данных (байт, слово, двойное слово). Устройство может иметь большое число регистров, которые, однако, сводятся к трем основным типам: регистры состояния - для передачи в процессор информации о состоянии, регистры управления - для передачи на устройство команд, регистры данных - для обмена данными между процессором и устройством. Регистры управления и состояния, как правило, являются однонаправленными, регистры данных могут быть как одно-, так и двунаправленными. Регистры устройств являются расширением адресного пространства ЭВМ. Расширение это может быть как явным - с доступом при помощи команд работы с памятью типа MOV, так и неявным - с отдельной адресацией портов ввода-вывода и доступом при помощи специальных команд типа IN/OUT.

 

 

 

    Рис.6.1. Прямое подключение устройства

 

Сколько-нибудь сложные  по управлению устройства подсоединяются к ЭВМ через контроллеры ввода-вывода (устройства управления), причем один контроллер может обслуживать несколько однотипных устройств, как показано на Рисунке 6.2. С точки зрения программного интерфейса это подключение ничем не отличается от предыдущего варианта, регистры контроллера выглядят для программы так же, как и регистры устройств.

 Рис.6.2. Подключение через контроллер

 

Быстродействие устройств  много ниже быстродействия центрального процессора, поэтому обычно после  выдачи команды на устройство программа  должна дожидаться ее завершения. Программа  может убедиться в завершении операции одним из двух способов: опросом или прерыванием. Опрос предполагает периодическое чтение регистра состояния устройства и проверку в нем признака завершения операции. Крайним случаем опроса является занятое ожидание - когда программа опрашивает устройство практически непрерывно, ничем другим не занимаясь. Помимо того, что при этом непроизводительно расходуется процессорное время, занятое ожидание еще и небезопасно: при отсутствии сигнала окончания от устройства (например, при сбое последнего) программа может "зависнуть" в состоянии занятого ожидания, а если она при этом была в непрерываемом состоянии - заблокировать работу всей системы.

Более действенным способом сигнализации об окончании операции является прерывание от устройства. При  большом разнообразии механизмов прерываний в разных архитектурах вычислительных систем все они обеспечивают сохранение вектора состояния прерванного процесса и идентификацию устройства, приславшего прерывание. При использовании прерываний ОС после выдачи команды ввода-вывода на устройство переводит процесс в состояние ожидания. Прерывание, присланное устройством, обрабатывается ядром ОС, которое при этом разблокирует процесс, ожидающий завершения операции.

Для устройств, с которыми обмен ведется большими порциями информации, применяется прямой доступ к памяти (ПДП), показанный на Рисунке 6.3. Контроллер ПДП работает параллельно с центральным процессором и обменивается данными прямо с оперативной памятью, минуя центральный процессор. Сам контроллер ПДП выглядит для программы как устройство с доступом через регистры. Программа должна его запрограммировать, записав в его регистры адрес области оперативной памяти, с которой происходит обмен, и размер блока данных, а затем запустить операцию, которая инициирует прямой обмен. Регистр данных контроллера ПДП при этом используется только для передачи управляющей информации. Об окончании обмена программа может узнать либо по прерыванию, либо опрашивая регистр состояния контроллера. Контроллер ПДП обычно содержит собственную буферную память для сглаживания разницы в быстродействии устройства и оперативной памяти. Напомним, что аппаратура ПДП обычно не обеспечивает динамическую трансляцию адресов. Поэтому ОС, получив от процесса запрос на выполнение операции ввода-вывода через ПДП, фиксирует в реальной памяти ту часть виртуального адресного пространства программы, с которой происходит обмен - до окончания обмена. Отметим также, что непрерывное виртуальное адресное пространство процесса может отображаться в несмежные страничные кадры реальной памяти, поэтому ОС может водить-выводить непрерывный с точки зрения процесса блок данных за несколько операций обмена.

Информация о работе Управление вводом-выводом в операционных системах. Структура функций ввода-вывода. Буферизация