Автор: Пользователь скрыл имя, 25 Февраля 2012 в 20:13, реферат
Возникновение теории алгоритмов. Модели вычислений. Тезис Чёрча — Тьюринга и алгоритмически неразрешимые проблемы. Современное состояние теории алгоритмов. Анализ трудоёмкости алгоритмов. Классы сложности.
Тео́рия алгори́тмов — наука, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п.
Возникновение теории алгоритмов
Развитие теории алгоритмов начинается с доказательства К. Гёделем теорем о неполноте формальных систем, включающих арифметику, первая из которых была доказана в 1931 г. Возникшее в связи с этими теоремами предположение о невозможности алгоритмического разрешения многих математических проблем (в частности, проблемы выводимости в исчислении предикатов) вызвало необходимость стандартизации понятия алгоритма. Первые стандартизованные варианты этого понятия были разработаны в 30-х годах XX века в работах А. Тьюринга, А. Чёрча и Э. Поста. Предложенные ими машина Тьюринга, машина Поста и лямбда-исчисление Чёрча оказались эквивалентными друг другу. Основываясь на работах Гёделя, С. Клини ввел понятие рекурсивной функции, также оказавшееся эквивалентным вышеперечисленным.
Одним из наиболее удачных
стандартизованных вариантов
Следует отметить также немалый вклад в теорию алгоритмов, сделанный Д. Кнутом, A. Ахо и Дж. Ульманом. Одной из лучших работ на эту тему является книга «Алгоритмы: построение и анализ» Томаса Х. Кормена, Чарльза И. Лейзерсона, Рональда Л. Ривеста, Клиффорда Штайна.
Модели вычислений
Тезис Чёрча — Тьюринга и алгоритмически неразрешимые проблемы
Алан Тьюринг высказал предположение (известное как Тезис Чёрча — Тьюринга), что любой алгоритм в интуитивном смысле этого слова может быть представлен эквивалентной машиной Тьюринга. Уточнение представления о вычислимости на основе понятия машины Тьюринга (и других эквивалентных ей понятий) открыло возможности для строгого доказательства алгоритмической неразрешимости различных массовых проблем (то есть проблем о нахождении единого метода решения некоторого класса задач, условия которых могут варьироваться в известных пределах). Простейшим примером алгоритмически неразрешимой массовой проблемы является так называемая проблема применимости алгоритма (называемая также проблемой остановки). Она состоит в следующем: требуется найти общий метод, который позволял бы для произвольной машины Тьюринга (заданной посредством своей программы) и произвольного начального состояния ленты этой машины определить, завершится ли работа машины за конечное число шагов, или же будет продолжаться неограниченно долго.
В течение первого десятилетия истории теории алгоритмов неразрешимые массовые проблемы были обнаружены лишь внутри самой этой теории (сюда относится описанная выше проблема применимости), а также внутри математической логики (проблема выводимости в классическом исчислении предикатов). Поэтому считалось, что теория алгоритмов представляет собой обочину математики, не имеющую значения для таких её классических разделов, как алгебра или анализ. Положение изменилось после того, как А. А. Марков и Э. Л. Пост в 1947 году установили алгоритмическую неразрешимость известной в алгебре проблемы равенства для конечнопорождённых и конечноопределённых полугрупп (т. н. проблемы Туэ). Впоследствии была установлена алгоритмическая неразрешимость и многих других «чисто математических» массовых проблем. Одним из наиболее известных результатов в этой области является доказанная Ю. В. Матиясевичем алгоритмическая неразрешимость десятой проблемы Гильберта.
Современное состояние теории алгоритмов
В настоящее время теория алгоритмов развивается, главным образом, по трем направлениям.
Анализ трудоёмкости алгоритмов
Целью анализа трудоёмкости алгоритмов является нахождение оптимального алгоритма для решения данной задачи. В качестве критерия оптимальности алгоритма выбирается трудоемкость алгоритма, понимаемая как количество элементарных операций, которые необходимо выполнить для решения задачи с помощью данного алгоритма. Функцией трудоемкости называется отношение, связывающие входные данные алгоритма с количеством элементарных операций.
Трудоёмкость алгоритмов по-разному зависит от входных данных. Для некоторых алгоритмов трудоемкость зависит только от объема данных, для других алгоритмов — от значений данных, в некоторых случаях порядок поступления данных может влиять на трудоемкость. Трудоёмкость многих алгоритмов может в той или иной мере зависеть от всех перечисленных выше факторов.
Одним из упрощенных видов
анализа, используемых на практике, является
асимптотический анализ алгоритмов.
Целью асимптотического анализа
является сравнение затрат времени
и других ресурсов различными алгоритмами,
предназначенными для решения одной
и той же задачи, при больших
объемах входных данных. Используемая
в асимптотическом анализе
Основной оценкой функции сложности алгоритма f(n) является оценка . Здесь n — величина объёма данных или длина входа. Мы говорим, что оценка сложности алгоритма
если при g > 0 при n > 0 существуют положительные с1, с2, n0, такие, что:
при n > n0, иначе говоря, можно найти такие с1 и c2, что при достаточно больших n f(n) будет заключена между
и .
В таком случае говорят еще, что функция g(n) является асимптотически точной оценкой функции f(n), так как по определению функция f(n) не отличается от функции g(n) с точностью до постоянного множителя (см. асимптотическое равенство). Например, для метода сортировки heapsort оценка трудоёмкости составляет
то есть g(n) = nlog n
Из следует, что .
Важно понимать, что представляет собой не функцию, а множество функций, описывающих рост с точностью до постоянного множителя.
дает одновременно верхнюю и нижнюю оценки роста функции. Часто бывает необходимо рассматривать эти оценки по отдельности. Оценка представляет собой верхнюю асимптотическую оценку трудоемкости алгоритма. Мы говорим, что если
Иначе говоря, запись означает, что f(n) принадлежит классу функций, которые растут не быстрее, чем функция g(n) с точностью до постоянного множителя.
Оценка задает нижнюю асимптотическую оценку роста функции f(n) и определяет класс функций, которые растут не медленнее, чем g(n) с точностью до постоянного множителя. если
Например, запись обозначает класс функций, которые растут не медленнее, чем , в этот класс попадают все полиномы со степенью большей единицы, равно как и все степенные функции с основанием большим единицы. Равенство выполняется тогда и только тогда, когда и .
Асимптотический анализ алгоритмов имеет не только практическое, но и теоретическое значение. Так, например, доказано, что все алгоритмы сортировки, основанные на попарном сравнении элементов, отсортируют n элементов за время, не меньшее .
Важную роль в развитии асимптотического анализа алгоритмов сыграли A. Ахо, Дж. Ульман, Дж. Хопкрофт.
Классы сложности
В рамках классической теории осуществляется классификация задач по классам сложности (P-сложные, NP-сложные, экспоненциально сложные и др.). К классу P относятся задачи, которые могут быть решены за время, полиномиально зависящее от объёма исходных данных, с помощью детерминированной вычислительной машины (например, машины Тьюринга), а к классу NP — задачи, которые могут быть решены за полиномиально выраженное время с помощью недетерминированной вычислительной машины, то есть машины, следующее состояние которой не всегда однозначно определяется предыдущими. Работу такой машины можно представить как разветвляющийся на каждой неоднозначности процесс: задача считается решённой, если хотя бы одна ветвь процесса пришла к ответу. Другое определение класса NP: к классу NP относятся задачи, решение которых с помощью дополнительной информации полиномиальной длины, данной нам свыше, мы можем проверить за полиномиальное время. В частности, к классу NP относятся все задачи, решение которых можно проверить за полиномиальное время. Класс P содержится в классе NP. Классическим примером NP-задачи является задача о коммивояжёре.
Поскольку класс P содержится
в классе NP, принадлежность той или
иной задачи к классу NP зачастую отражает
наше текущее представление о
способах решения данной задачи и
носит неокончательный
Исследования сложности алгоритмов позволили по-новому взглянуть на решение многих классических математических задач и найти для ряда таких задач (умножение многочленов и матриц, решение линейных систем уравнений и др.) решения, требующие меньше ресурсов, нежели традиционные.
Литература