Технологии защиты информации в Wi-Fi сетях

Автор: Пользователь скрыл имя, 05 Декабря 2012 в 10:00, курсовая работа

Описание работы

Рассматривая сферы применения беспроводных технологий, нельзя не заметить, что последние годы активно набирала популярность технология создания беспроводных сетей Wi-Fi. Это объясняется тем, что беспроводные технологии значительно повышают мобильность людей. Мобильность изменяет способы ведения бизнеса организациями. Для людей в реальном времени, мгновенный обмен сообщениями, голосовые сервисы, доступ к сети во время поездок и в реальном времени в услови-ях офиса стали обычным положением дел. Сегодня беспроводные сети приобретают исключительно важное значение для бизнеса. Организации внедряют беспроводные сети, чтобы повысить

Содержание

Содержание 2
Введение. Безопасность беспроводных сетей 3
Обзор систем шифрования 4
Векторы инициализации 6
Режимы с обратной связью 7
Кодирование по стандарту 802.11 7
Механизмы аутентификации стандарта 802.11 10
Аутентификация с использованием МАС-адресов 12
Уязвимость системы защиты стандарта 802.11 13
Уязвимость открытой аутентификации 13
Уязвимость аутентификации с совместно используемым ключом 13
Уязвимость аутентификации с использованием МАС-адресов 15
Уязвимость WEP-шифрования 15
Проблемы управления статическими WEP-ключами 19
Защищенные LAN стандарта 802.11 19
Первая составляющая: базовая аутентификация 20
Вторая составляющая: алгоритм аутентификации 25
Третья составляющая: алгоритм защиты данных 25
Четвертая составляющая: целостность данных 28
Усовершенствованный механизм управления ключами 29
Шифрование по алгоритму AES 30
Заключение 32

Работа содержит 1 файл

Kursach.docx

— 764.65 Кб (Скачать)

 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И  НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

 

Иркутский государственный  университет путей сообщения

Институт  информационных технологий и моделирования

Кафедра «Информационная  безопасность»

 

 

 

 

 

 

КУРСОВАЯ  РАБОТА

По  дисциплине «Основы информационной безопасности»

на  тему:

 

 

 

 

 

 

«Технологии защиты информации в Wi-Fi сетях»

 

 

 

 

 

 

 

 


Выполнил студент БИ.4-11-1

Малых В. Ю.               

 

 

Научный руководитель, к. э. н.

Глухов Н. И.

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Иркутск, 2012

Содержание

 

Содержание 2

Введение. Безопасность беспроводных сетей 3

Обзор систем шифрования 4

Векторы инициализации 6

Режимы с обратной связью 7

Кодирование по стандарту 802.11 7

Механизмы аутентификации стандарта 802.11 10

Аутентификация с использованием МАС-адресов 12

Уязвимость системы защиты стандарта 802.11 13

Уязвимость открытой аутентификации 13

Уязвимость аутентификации с совместно используемым ключом 13

Уязвимость аутентификации с использованием МАС-адресов 15

Уязвимость WEP-шифрования 15

Проблемы управления статическими WEP-ключами 19

Защищенные LAN стандарта 802.11 19

Первая составляющая: базовая аутентификация 20

Вторая составляющая: алгоритм аутентификации 25

Третья составляющая: алгоритм защиты данных 25

Четвертая составляющая: целостность данных 28

Усовершенствованный механизм управления ключами 29

Шифрование по алгоритму AES 30

Заключение 32

Литература 33

 

Введение. Безопасность беспроводных сетей

       Рассматривая сферы применения беспроводных технологий, нельзя не заметить, что последние годы активно набирала популярность технология создания беспроводных сетей Wi-Fi. Это объясняется тем, что беспроводные технологии значительно повышают мобильность людей. Мобильность изменяет способы ведения бизнеса организациями. Для людей в реальном времени, мгновенный обмен сообщениями, голосовые сервисы, доступ к сети во время поездок и в реальном времени в условиях офиса стали обычным положением дел. Сегодня беспроводные сети приобретают исключительно важное значение для бизнеса. Организации внедряют беспроводные сети, чтобы повысить продуктивность сотрудников, создать более благоприятные условия для совместной работы и обеспечить более оперативное реагирование на обращения клиентов. Таким образом, технологии Wi-Fi оказались эффективным решением корпоративных задач. Будучи активно используемым сегментом корпоративной сети, беспроводные сети передают потоки конфиденциальной информации. А в виду кардинального отличия среды передачи данных беспроводных сетей по

сравнению с  проводными сегментами и ограниченных возможностей по технической защите беспроводных клиентов, существенно возрастает риск несанкционированного доступа злоумышленника к передаваемой информации.

Устройства  стандарта 802.11 связываются друг с  другом, используя в качестве переносчика данных сигналы, передаваемые в диапазоне радиочастот. Данные передаются по радио отправителем, полагающим, что приемник также работает в выбранном радиодиапазоне. Недостатком такого механизма является то, что любая другая станция, использующая этот диапазон, тоже способна принять эти данные.

Если  не использовать какой-либо механизм защиты, любая станция стандарта 802.11 сможет обработать данные, посланные по беспроводной локальной сети, если только ее приемник работает в том же радиодиапазоне. Для обеспечения хотя бы минимального уровня безопасности необходимы следующие компоненты.

  • Средства для принятия решения относительно того, кто или что может использовать беспроводную LAN. Это требование удовлетворяется за счет механизма аутентификации, обеспечивающего контроль доступа к LAN.
  • Средства защиты информации, передаваемой через беспроводную среду. Это требование удовлетворяется за счет использования алгоритмов шифрования.

На рис.1 показано, что защита в беспроводных сетях обеспечивается как за счет аутентификации, так и благодаря шифрованию. Ни один из названных механизмов в отдельности не способен обеспечить защиту беспроводной сети.

Рис. 1. Защита в беспроводных сетях  обеспечивается за счет аутентификации и шифрования


В спецификации стандарта 802.11 регламентировано применение механизма аутентификации устройств с открытым и с совместно используемым ключом и механизма WEP, обеспечивающего защищенность данных на уровне проводных сетей. Оба алгоритма аутентификации, с открытым и с совместно используемым ключом, основаны на WEP-шифровании и применении WEP-ключей для контроля доступа. Поскольку алгоритм WEP играет важную роль в обеспечении безопасности сетей стандарта 802.11, в следующем разделе будут рассмотрены основы шифрования и шифры.

Обзор систем шифрования

Механизмы шифрования основаны на алгоритмах, которые  рандомизируют данные. Используются два вида шифров.

  • Поточный (групповой) шифр.
  • Блочный шифр.

Шифры обоих  типов работают, генерируя ключевой поток (key stream), получаемый на основе значения секретного ключа. Ключевой поток смешивается с данными, или открытым текстом, в результате чего получается закодированный выходной сигнал, или зашифрованный текст. Названные два вида шифров отличаются по объему данных, с которыми они могут работать одновременно.

Поточный шифр генерирует непрерывный ключевой поток, основываясь на значении ключа. Например, поточный шифр может генерировать 15-разрядный ключевой поток для шифрования одного фрейма и 200-разрядный ключевой поток для шифрования другого. На рис. 2 проиллюстрирована работа поточного шифра. Поточные шифры — это небольшие и эффективные алгоритмы шифрования, благодаря которым нагрузка на центральный процессор оказывается небольшой. Наиболее распространенным является поточный шифр RC4, который и лежит в основе алгоритма WEP.

Блочный шифр, наоборот, генерирует единственный ключевой поток шифрования фиксированного размера. Открытый текст делится на блоки, и каждый блок смешивается с ключевым потоком независимо. Если блок открытого текста меньше, чем блок ключевого потока, первый дополняется с целью получения блока нужного размера. На рис. 3 проиллюстрирована работа блочного шифра. Процесс фрагментации, а также другие особенности шифрования с использованием блочного шифра вызывают повышенную, по сравнению с поточным шифрованием, нагрузку на центральный процессор. В результате производительность устройств, применяющих блочное шифрование, снижается.

Рис. 2. Так осуществляется поточное шифрование

Рис. 3. Так осуществляется блочное  шифрование


Процесс шифрования, описанный нами для поточных и блочных шифров, называется режим шифрования с помощью книги электронных кодов (Electronic Code Book, ЕСВ). Режим шифрования ЕСВ характеризуется тем, что один и тот же открытый текст после шифрования преобразуется в один и тот же зашифрованный текст. Этот фактор потенциально представляет собой угрозу для безопасности, поскольку злоумышленники могут получать образцы зашифрованного текста и выдвигать какие-то предположения об исходном тексте.

Некоторые методы шифрования позволяют решить эту проблему.

  • Векторы инициализации (initialization vectors, IV).
  • Режимы с обратной связью (feedback modes).

Векторы инициализации

Вектор  инициализации — это номер, добавляемый  к ключу, конечным результатом этого является изменение информации ключевого потока. Вектор инициализации связывается с ключом до того, как начнется генерация ключевого потока. Вектор инициализации все время изменяется, то же самое происходит с ключевым потоком. На рис. 4 показаны два сценария. Первый относится к шифрованию с использованием поточного шифра без применения вектора инициализации. В этом случае открытый текст DATA после смешения с ключевым потоком 12345 всегда преобразуется в зашифрованный текст AHGHE. Второй сценарий показывает, как тот же открытый текст смешивается с ключевым потоком, дополненным вектором инициализации для получения другого зашифрованного текста. Обратите внимание на то, что зашифрованный текст во втором случае отличается от такового в первом. Стандарт 802.11 рекомендует изменять вектор инициализации пофреймово (on a per-frame basis). Это означает, что если один и тот же фрейм будет передан дважды, весьма высокой окажется вероятность того, что зашифрованный текст будет разным.

1. Шифрование  с использованием поточного шифра  без применения вектора инициализации

1. Шифрование  с использованием поточного шифра  без применения вектора инициализации





2. Шифрование  с использованием поточного шифра  и вектора инициализации

Рис. 4. Шифрование и векторы инициализации

Режимы с обратной связью

Режимы  с обратной связью представляют собой модификации процесса шифрования, выполненные во избежание того, чтобы один и тот же открытый текст преобразовывался в ходе шифрования в одинаковый зашифрованный текст.

Кодирование по стандарту 802.11

Спецификация  стандарта 802.11 предусматривает обеспечение  защиты данных с использованием алгоритма  WEP. Этот алгоритм основан на применении симметричного поточного шифра RC4. Симметричность RC4 означает, что согласованные WEP-ключи размером 40 или 104 бит статично конфигурируются на клиентских устройствах и в точках доступа. Алгоритм WEP был выбран главным образом потому, что он не требует объемных вычислений. Хотя персональные компьютеры с беспроводными сетевыми картами стандарта 802.11 сейчас широко распространены, в 1997 году ситуация была иной. Большинство из устройств, включаемых в беспроводные LAN, составляли специализированные устройства (application-specific devices, ASD). Примерами таких устройств могут служить считыватели штрих-кодов, планшетные ПК (tablet PC) и телефоны стандарта 802.11. Приложения, которые выполнялись этими специализированными устройствами, обычно не требовали большой вычислительной мощности, поэтому ASD оснащались слабенькими процессорами. WEP - простой в применении алгоритм, для записи которого в некоторых случаях достаточно 30 строк кода. Малые непроизводительные расходы, возникающие при применении этого алгоритма, делают его идеальным алгоритмом шифрования для специализированных устройств.

Чтобы избежать шифрования в режиме ЕСВ, WEP использует 24-разрядный вектор инициализации, который добавляется к ключу перед выполнением обработки по алгоритму RC4. На рис. 5 показан фрейм, зашифрованный по алгоритму WEP с использованием вектора инициализации.

Рис. 5. Фрейм, зашифрованный по алгоритму  WEP


Вектор  инициализации должен изменяться пофреймово во избежание IV-коллизий. Коллизии такого рода происходят, когда используются один и тот же вектор инициализации и один и тот же WEP-ключ, в результате чего для шифрования фрейма используется один и тот же ключевой поток. Такая коллизия предоставляет злоумышленникам большие возможности по разгадыванию данных открытого текста путем сопоставления подобных элементов. При использовании вектора инициализации важно предотвратить подобный сценарий, поэтому вектор инициализации часто меняют. Большинство производителей предлагают пофреймовые векторы инициализации в своих устройствах для беспроводных LAN.

Спецификация  стандарта 802.11 требует, чтобы одинаковые WEP-ключи были сконфигурированы как на клиентах, так и на устройствах, образующих инфраструктуру сети. Можно определять до четырех ключей на одно устройство, но одновременно для шифрования отправляемых фреймов используется только один из них.

WEP-шифрование используется только по отношению к фреймам данных и во время процедуры аутентификации с совместно используемым ключом. По алгоритму WEP шифруются следующие поля фрейма данных стандарта 802.11.

  • Данные или полезная нагрузка (payload).
  • Контрольный признак целостности (integrity check value, ICV).

Значения  всех остальных полей передаются без шифрования. Вектор инициализации должен быть послан незашифрованным внутри фрейма, чтобы приемная станция могла получить его и использовать для корректной расшифровки полезной нагрузки и ICV. На рис. 6 схематично представлен процесс шифрования, передачи, приема и расшифровки фрейма данных в соответствии с алгоритмом WEP.

В дополнение к шифрованию данных спецификация стандарта 802.11 предлагает использовать 32-разрядное  значение, функция которого — осуществлять контроль целостности. Этот контрольный признак целостности говорит приемнику о том, что фрейм был получен без повреждения в процессе передачи.

Контрольный признак целостности вычисляется  по всем полям фрейма с использованием 32-разрядной полиномиальной функции контроля и с помощью циклического избыточного кода (CRC-32). Станция-отправитель вычисляет это значение и помещает результат в поле ICV. Значение поля ICV включается в часть фрейма, шифруемую по алгоритму WEP, так что его не могут просто так "увидеть" злоумышленники. Получатель фрейма дешифрует его, вычисляет значение ICV и сравнивает результат со значением поля ICV полученного фрейма. Если эти значения совпадают, фрейм считается подлинным, неподдельным. Если они не совпадают, такой фрейм отбрасывается. На рис. 7 представлена диаграмма функционирования механизма ICV.

Фрейм данных с открытым текстом

Фрагментатор

Фрагмент фрейма с

открытым текстом

ICV

Фрагмент фрейма с

открытым текстом и с ICV

Ключ

IV

WEP

Ключевой проток

XOR

Фрагмент фрейма с

зашифрованным текстом и с ICV

 

Процесс шифрования

 

Фрагмент фрейма с

открытым текстом

ICV

Фрагмент фрейма с

открытым текстом и с ICV

Ключ

IV

WEP

Ключевой проток

XOR

Фрагмент фрейма с

зашифрованным текстом и с ICV

 

Процесс дешифрирования

 

Отброшенный плохой ICV-фрейм

 

Рис. 6. Процесс шифрования и дешифрования

Фрагмент фрейма с открытым текстом

ICV

CRC32

Фрагмент фрейма с открытым текстом

 

32-разрядный ICV

К механизму 

шифрования WEP

Рис. 7. Диаграмма функционирования механизма ICV

Информация о работе Технологии защиты информации в Wi-Fi сетях