Состав, классификация и характеристики периферийных устройств

Автор: Пользователь скрыл имя, 12 Января 2012 в 19:21, лекция

Описание работы

Периферийное устройство (ПУ) - устройство, входящее в состав внешнего оборудования микро-ЭВМ, обеспечивающее ввод/вывод данных, организацию промежуточного и длительного хранения данных.
Можно выделить следующие основные функциональные классы периферийных устройств.

Работа содержит 1 файл

классиф ПУ.doc

— 125.00 Кб (Скачать)

Устройства  вывода

Монитор

Монитор (дисплей) - устройство визуализации текстовой или графической информации без ее долговременной фиксации. По типу отображаемой информации мониторы делят на алфавитно-цифровые (в настоящее время не используются) и графические. По способу формирования изображения графические дисплеи делят на векторные (не используются в ПК) и растровые. В векторном дисплее изображение строится из элементарных отрезков векторов (в случае ЭЛТ - электронный луч непрерывно "вырисовывает" контур изображения, собирая его из этих векторов). В растровых дисплеях изображение получают с помощью матрицы точек (в случае ЭЛТ - электронные лучи пробегают по строкам экрана, подсвечивая требуемые точки своим цветом). Наиболее широкое распространение получили мониторы на базе электронно-лучевых трубок (ЭЛТ) и на основе жидких кристаллов (ЖК).

Принцип действия ЭЛТ-мониторов заключается  в том, что испускаемый электродом (электронной пушкой) пучок электронов, попадая на экран, покрытый люминофором, вызывает его свечение (рис. 16.2). На пути пучка электронов находятся дополнительные электроды: отклоняющая система (определяет направление пучка) и модулятор (регулирует яркость получаемого изображения). В случае цветного монитора имеются три электронных пушки с отдельными схемами управления, а на поверхность экрана нанесен люминофор трех основных цветов: R (red) - красный, G (green) - зеленый, B (blue) - синий. Чтобы каждая пушка попадала только по люминофору своего цвета, используется теневая маска. Электронный луч периодически сканирует весь экран, образуя близкорасположенные строки развертки. По мере движения луча по строкам видеосигнал, подаваемый на модулятор, изменяет яркость определенных пикселей, образуя видимое изображение. В цикле сканирования луч движется по зигзагообразной траектории от левого верхнего угла экрана к нижнему правому. Прямой ход луча по горизонтали осуществляется сигналом строчной (горизонтальной) развертки, а по вертикали - сигналом кадровой (вертикальной) развертки.

Очевидно, наиболее важными параметрами для  монитора являются: частота кадровой развертки, частота строчной развертки  и полоса пропускания видеосигнала. Частота кадровой развертки во многом определяет устойчивость изображения (отсутствие мерцаний). Ассоциация VESA1) рекомендует использовать для разрешений 640х480 и 800х600 частоту кадровой развертки не ниже 72 Гц, а для разрешения 1024х768 - не ниже 70 Гц. Современные мониторы поддерживают кадровые развертки в диапазоне 60-160 Гц. Частота строчной развертки определяется произведением частоты вертикальной развертки на количество выводимых строк в одном кадре с учетом обратного хода (разрешение по вертикали), типичное значение - 30-64 кГц (отражает количество строк, которое монитор может воспроизвести за одну секунду). Полоса видеосигнала определяется произведением разрешения по горизонтали с учетом обратного хода на частоту строчной развертки (отражает число точек в строке, которое монитор может воспроизвести за одну секунду). К важным факторам, определяющим четкость изображения, относят также размеры точек люминофора, а точнее - расстояние между ними (dot pitch), типичное значение - 0,25-0,28 мм.

Работа ЖК-мониторов основана на свойстве некоторых веществ проявлять анизотропию в текучем ("жидком") состоянии. Первый ЖК-монитор был продемонстрирован американской фирмой RCA в 1966 году. Для изготовления ЖК-мониторов используют так называемые нематические кристаллы, молекулы которых имеют форму палочек или вытянутых пластинок. В отсутствии электрического поля молекулы этого вещества образуют скрученные спирали (обычно 90º). В результате такой ориентации молекул плоскость поляризации проходящего света поворачивается. Если же к прозрачным электродам приложено напряжение, спираль молекул распрямляется (они ориентируются вдоль поля), при этом поворота плоскости поляризации проходящего света не происходит. Используя подходящим образом ориентированный пленочный поляризатор, можно добиться, чтобы в первом случае ЖК-элемент пропускал проходящий свет, а во втором - нет.

Таким образом, каждая точка изображения  на ЖК-мониторе представляет из себя соответствующий TSTN2) -элемент, а весь экран - матрицу этих элементов. Для адресации ЖК-элементов можно использовать два метода: прямой (пассивный) и косвенный (активный). При прямой адресации элементов каждая выбираемая точка изображения активируется подачей напряжения на соответствующий проводник-электрод для строки (общий для целой строки) и на проводник-электрод для столбца (общий для всего столбца). Матрицы с пассивным управлением ("пассивные матрицы") имеют недостаточный контраст изображения, т.к. электрическое поле возникает не только в точке пересечения адресных проводников, но и на всем пути распространения тока. Эта проблема решается при использовании так называемых активных матриц, когда каждой точкой изображения управляет свой независимый электронный переключатель (как правило, TFT3)).

При применении активных матриц большое значение имеют  такие параметры, как малое время  отклика (типичное значение - 10-25 мкс) и большой угол зрения (75º-120º).

При подключении  мониторов к видеокарте используются в основном два типа разъемов: разъем DB-15 с аналоговым видеосигналом и  опционально с цифровым интерфейсом DDC4) и разъем DVI (Digital Visual Interface), позволяющий передавать как аналоговый видеосигнал, так и цифровой.

Принтеры

Под принтером  обычно подразумевают устройство вывода данных, преобразующее информацию в удобную для чтения форму на бумаге. Принтеры классифицируют по следующим критериям:

По способу  печати:

последовательные - печатный документ формируется символ за символом;

строчные - при печати устройство формирует  сразу всю строку целиком;

страничные - на бумагу наносится изображение  сразу всей страницы.

По технологии печати:

ударные (для переноса красящего вещества используется механический удар);

безударные.

К ударным  принтерам относят матричные  принтеры. В них печатающая головка  из 9, 18 или 24 игл, приводимых в движение электромагнитами, крепится к каретке и перемещается вместе с ней по направляющим параллельно бумаге вдоль печатаемой строки. Часть игл матрицы приводится в движение, и они "ударяют" по красящей ленте, находящейся между головкой и бумагой, формируя, таким образом, след из маленьких точек. К недостаткам этих принтеров относят низкую скорость печати и высокий уровень шума при работе. Достоинством же является то, что они оставляют оттиски букв на бумаге, а это важно при составлении финансовых или официальных документов. Следует отметить, что у этой технологии печати в общем случае нежесткие требования к качеству бумаги.

К безударным относят струйные чернильные принтеры. У них, так же как и у матричных, головка движется в горизонтальной плоскости над бумагой. Печатающая головка содержит сопла, через которые подаются чернила. У разных моделей количество сопел может варьироваться от 12 до 64. Различные технологии струйных принтеров отличаются способом выбрасывания чернильной капельки из сопла. В принтерах Cannon и Hewlett Packard используется технология bubble-jet (или thermal ink jet). В каждом сопле находится нагревательный элемент (тонкопленочный резистор). При резком нагревании образуется чернильный паровой пузырь, который выталкивает из сопла очередную порцию чернил. В принтерах Epson используется технология piezo ink jet. Выбросом капли из сопла управляет диафрагма из пьезоэлемента. Под действием электрического поля пьезоэлемент деформируется и выталкивает каплю из сопла. Скорость работы струйных принтеров примерно такая же, как и у матричных. Несомненным преимуществом перед матричными принтерами является низкий уровень шума при работе. Однако следует иметь в виду, что струйные принтеры требуют высококачественной бумаги. В целом, необходимо отметить, что расходные материалы для данной технологии являются самыми дорогими, по сравнению с принтерами других технологий печати.

Другой  популярной безударной технологией  является технология электрографической печати, которая используется в так называемых лазерных принтерах. Луч микромощного полупроводникового лазера формирует электронное изображение на фотоприемном барабане. Барабану предварительно сообщается некий статический заряд. Таким образом, освещаемые и неосвещаемые лазером участки барабана имеют разный заряд. К заряженным участкам прилипают частицы порошкообразного тонера. При соприкосновении бумаги с барабаном на ней остается отпечаток, который фиксируется за счет нагрева частиц тонера до температуры плавления. Лазерные принтеры имеют высокую скорость печати и высокую разрешающую способность. Недостатком является высокая цена принтеров и необходимость использования качественной бумаги.

Для управления принтером используются специальные  языки. Для матричных и струйных принтеров наибольшее распространение получил язык ESC/P5). Для лазерных и некоторых струйных принтеров основными языками управления являются PCL6) фирмы Hewlett Packard и PostScript фирмы Adobe.

Для подключения  принтеров используют RS-232C, IEEE 1284 или USB.

Внешние запоминающие устройства

Накопители  с магнитным носителем

В настоящее время распространены три типа накопителей с магнитной записью информации: на жестких (несъемных) магнитных дисках (НЖМД или "винчестеры"), на гибких магнитных дисках (НГМД или флоппи-дисководы) и на магнитной ленте (НМЛ или стримеры).

НЖМД  содержит один или несколько жестких алюминиевых или стеклянных дисков, покрытых слоем ферромагнитного материала, которые смонтированы на оси-шпинделе. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря тонкой прослойке воздуха (доли микрон), образуемой при быстром вращении дисков. Скорость вращения современных винчестеров составляет 540015000 об/мин. Информация записывается на диск в результате изменения ориентации магнитных доменов на участке поверхности диска под записывающей головкой. Для кодирования информации в первых винчестерах использовался метод MFM1). В этом случае "1" переводится в комбинацию "01", а "0" - в комбинацию "10", если следует за битом "0", или в "00", если следует за битом "1", что обеспечивает не более трех нулей подряд. При записи этой последовательности на диск логическая "1" кодируется сменой намагниченности на соответствующем участке, а логический "0" - отсутствием смены (рис. 16.3). Это означает, что один переход намагниченности соответствует 1-3 битам. 
 

Поверхность магнитного носителя в ее первозданном виде - это всего лишь магнитное покрытие, которое не готово к работе. Структура диска, включающая в себя дорожки (концентрические полоски, но которые разделена каждая сторона пластины), цилиндры (дорожки на обеих сторонах пластины, расположенные на окружностях с одинаковым радиусом) и сектора (участки дорожки, представляющие собой наименьший размер порции данных, которая может быть изменена в результате перезаписи), формируется при физическом (низкоуровневом) форматировании. В ходе этой операции контроллер накопителя записывает на носитель служебную информацию: байты синхронизации, указывающие на начало каждого сектора, идентификационные заголовки, состоящие из номеров головки, сектора и цилиндра, байты контрольной суммы CRC (Cyclic Redundancy Check) и коды обнаружения ошибок ECC (Error Correction Code); при этом происходит также маркировка дефектных секторов для исключения обращения к ним в процессе эксплуатации диска.

Все современные  винчестеры поддерживают технологию SMART (Self-Monitoring, Analysis and Reporting Technology), которая предполагает выполнение внутренней диагностики винчестера, определяющей состояние двигателя, магнитных головок, рабочих поверхностей носителя и контроллера.

Определенный  интерес представляют также накопители со сменным носителем: НГМД и НМЛ (последние реже используются в настольных системах).

Обычно  дискета (floppy disk) представляет собой  гибкую пластиковую пластину, покрытую ферромагнитным слоем. Эта пластина помещается в гибкую или жесткую  оболочку, защищающую магнитный слой от физических повреждений. Запись и считывание дискет осуществляется с помощью специального устройства - дисковода (флоппи-дисковода). Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.

Первая  дискета диаметром в 200 мм (8 дюймов) с соответствующим дисководом была представлена фирмой IBM в 1971. В первых моделях IBM PC использовались дискеты диаметром 133 мм (5¼ дюйма). В 1982 году фирма Sony представила дискеты диаметром 90 мм (3½ дюйма) и дисководы для них. Широкое распространение этот тип дискет получил в 1984 году, когда Apple использовала новый формат для компьютеров Macintosh. Фирма IBM приняла решение использовать 3,5-дюймовые дисководы только в 1987 году в компьютерах серии PS/2. Наиболее популярные форматы дискет представлены в табл. 16.3. При записи на дискету используется кодирование MFM.

Внутренние  дисководы подключаются при помощи интерфейса SA-400, разработанного в начале 1970-х годов компанией Shugart Associates. Интерфейс относится к категории интерфейсов на уровне устройства, т.к. содержит сигналы, характерные для функций устройства (Motor On - включить мотор, Index - проход индексной метки, Side 1 Select - выбор головки и т.п.) Интерфейс обеспечивает скорость порядка 300 Кбит/с.

Информация о работе Состав, классификация и характеристики периферийных устройств