Система счисления древнего мира

Автор: Пользователь скрыл имя, 14 Февраля 2013 в 18:38, реферат

Описание работы

Сейчас в большинстве стран мира, несмотря на то, что там говорят на разных языках, считают одинаково, "по-арабски". Но так было не всегда. Еще каких-то пятьсот лет назад ничего подобного и в помине не было даже в просвещенной Европе, не говоря уже о какой-нибудь Африке или Америке.
Но тем не менее числа люди все равно как-то записывали. У каждого народа была своя собственная или позаимствованная у соседа система записи чисел. Одни использовали буковки, другие - значки, третьи - закорючки. У кого-то получалось удобнее, у кого-то не очень.

Работа содержит 1 файл

Система счисления древнего мира(Гавриленко 9БД102).doc

— 122.50 Кб (Скачать)

                                                    Рим

 

Римские обозначения чисел известны ныне лучше, чем любая другая древняя  система счисления. Объясняется  это не столько какими-то особыми  достоинствами римской системы, сколько тем огромным влиянием, которым пользовалась римская империя в сравнительно недавнем прошлом. Этруски, завоевавшие Римскую империю в 7 в. до н.э., испытали на себе влияние восточно-средиземноморских культур. Этим отчасти объясняется сходство основных принципов Римской и аттической систем счисления. Обе системы были десятичными, хотя в обеих системах счисления особую роль играло число пять. Обе системы использовали при записи чисел повторяющиеся символы. Старыми римскими символами для обозначения чисел 1, 5, 10, 100 и 1000 были, соответственно, символы I, V, X, Q (или Е, или Д) и f. Хотя о первоначальном значении этих символов было написано много, их удовлетворительного объяснения у нас нет до сих пор. Согласно одной из распространенных теорий, римская цифра V изображает раскрытую руку с четырьмя прижатыми друг к другу пальцами и отставленным большим пальцем; символ X, согласно той же теории, изображает две скрещенные руки или сдвоенную цифру V. Символы чисел 100 и 1000, возможно, берут начало от греческих букв Q и f. Неизвестно, произошли ли более поздние обозначения C и M от старых римских символов или они акрофонически связаны с начальными буквами латинских слов, означавших 100 (центум) и 1000 (милле). Полагают, что римский символ числа 500, буква D, возник из половинки старого символа, обозначавшего 1000. Если не считать, что большинство римских символов скорее всего не были акрофоническими и что промежуточные символы для обозначения чисел 50 и 500 не были комбинациями символов чисел 5 и 10 или 5 и 100, то в остальном римская система счисления напоминала аттическую. Разумеется, в деталях они отличались. Римляне часто использовали принцип вычитания, поэтому иногда вместо VIIII использовали IX и XC вместо LXXXX; сравнительно позднее символ IV вместо IIII. Дробей римляне избегали так же упорно, как и больших чисел. В практических задачах, связанных с измерениями, они не использовали дроби, подразделяя единицу измерения обычно на 12 частей, с тем чтобы результат измерения представить в виде составного числа, суммы кратных различных единиц, как это делается сегодня, когда длину выражают в ярдах, футах и дюймах. Английские слова «ounce» (унция) и «inch» (дюйм) происходят от латинского слова uncia (унция), обозначавшего одну двенадцатую основной единицы длины.

                      Обозначения чисел у древних евреев

 

Семитские народы могут претендовать на роль создателей алфавитного принципа обозначения  чисел в том виде, как он использовался  в ионической системе. Действительно, с небольшими модификациями этот принцип применялся евреями, сирийцами, арамейцами и арабами. И все же существует мало сомнений в том, что алфавитные обозначения чисел были заимствованы ими у древних греков, по-видимому из Милета, которые изобрели эти обозначения еще в 8 в. до н.э. У евреев использование алфавитных обозначений чисел окончательно вошло в обиход к 2 в. до н.э. Девять букв алфавита использовались для обозначения первых девяти целых чисел; еще девять букв означали первые девять кратных числа 10(י); остальные буквы использовались для обозначения сотен. Так как букв в алфавите для обозначения всех кратных числа 100(ק ) не хватало, в Талмуде числа, превосходящие 400ת ) ), записывались путем комбинации: например, число 500 обозначалось символами, соответствующими числам 400 и 100, а 900 записывалось как 400 и 400 и 100. Позднее для обозначения чисел, кратных 100 и превосходящих 400, использовались окончательные варианты формы букв или других символов, в результате чего все девять кратных числа 100 получили свои индивидуальные обозначения в виде буквы или специального знака. Как и в ионической системе счисления, символы для обозначения первых девяти кратных числа 1000 были такими же, как символы, обозначающие первые девять чисел в разряде единиц.

Америка

 

Исследователи, путешествовавшие в 16 в. по Центральной  Америке, обнаружили цивилизации с высокоразвитыми системами счисления, отличными от тех, которые были известны в Европе. Самыми важными элементами в системе счисления майя были использование позиционного принципа и символа нуля. Если отвлечься от того, что принятая у индейцев майя система счисления была не шестидесятиричной, а двадцатиричной и вместо 10 использовала вспомогательное основание 5, то в остальном принципы были аналогичны тем, которые ранее были в ходу у жителей Древнего Вавилона. В схеме майя точка означала единицу, а повторяющиеся точки – числа до четырех; пятерку обозначала горизонтальная черта, а две и три горизонтальные черты обозначали, соответственно, числа десять и пятнадцать. Для обозначения числа двадцать майя воспользовались позиционным принципом, используя точку, помещенную над символом нуля.

Числа в системе счисления древних  майя записывались в столбец, причем верхние символы были старшими. Самая  нижняя позиция соответствовала  разряду единиц; «этажом выше»  располагалось число двадцаток. Еще выше единица соответствовала не кратным числа 400, как можно было бы ожидать, а кратным числа 360. За исключением этого разряда, связанного, насколько можно судить, с календарными соображениями и продолжительностью года, все остальные более высокие позиции соответствовали степеням числа 20.

Система счисления у ацтеков в Мексике  была более последовательно двадцатиричной, чем у майя, но в остальном менее  тонкой, так как не использовала ни позиционный принцип, ни специальный  символ для нуля. Точка означала у ацтеков единицу, а для обозначения степеней числа 20 были введены новые знаки: флаг для 20, дерево для 400 и кошелек для 8000. При необходимости другие числа представлялись с помощью повторения этих символов, а от их чрезмерного повторения они избавлялись, вводя специальные промежуточные коллективные знаки: ромбовидный знак для 10 и фрагменты дерева для 100, 200 или 300.

До  появления в Северной Америке  европейцев индейцы не имели письменности. Исследования древних систем счисления  показывают, что используемые названия чисел были в основном прилагательными и лишь в отдельных случаях достигали уровня абстракции, когда они становились существительными. Тем не менее с помощью рисунков или устно индейцы могли выразить число вплоть до миллиона. Системы составления чисел были самыми различными, но примерно половина из них по существу была десятичной.

Китай

 

Одна  из древнейших систем счисления была создана в Китае, а также в  Японии. Эта система возникла как  результат оперирования с палочками, выкладываемыми для счета на стол или доску. Числа от единицы до пяти обозначались, соответственно, одной, двумя и т.д. палочками, выкладываемыми вертикально, а одна, две, три или четыре вертикальные палочки, над которыми помещалась одна поперечная палочка, означали числа шесть, семь, восемь и девять. Первые пять кратных числа 10 обозначались одной, двумя, ј, пятью горизонтальными палочками, а одна, две, три и четыре горизонтальные палочки, к которым сверху приставлялась вертикальная палочка, означали числа 60, 70, 80 и 90. Для обозначения чисел больше 99 использовался позиционный принцип. Число 6789 китайцы записали бы так: . Обозначения чисел с помощью палочек тесно связано со счетом на пальцах и счетной доске, но применялось оно также и в письменных вычислениях.

Во  второй китайской системе счисления для обозначения первых девяти целых чисел или символов (см. таблицу обозначений чисел) используют девять различных знаков и одиннадцать дополнительных символов для обозначения первых одиннадцати степеней числа 10. В сочетании с умножением и вычитанием это позволяло записывать любое число меньше триллиона. Если один из символов, обозначающих первые девять целых чисел, стоит перед (при чтении слева направо) символом, означающим степень числа 10, то первое нужно умножить на второе, если же символ одного из девяти первых целых чисел стоит на последнем месте, то это число надлежит прибавить к обозначенному предыдущими символами.

Индия

 

Письменных  памятников древнеиндийской цивилизации  сохранилось очень немного, но, судя по всему, индийские системы счисления проходили в своем развитии те же этапы, что и во всех прочих цивилизациях. На древних надписях из Мохенджо-Даро вертикальная черточка в записи чисел повторяется до тринадцати раз, а группировка символов напоминает ту, которая знакома нам по египетским иероглифическим надписям. В течение некоторого времени имела хождение система счисления, очень напоминающая аттическую, в которой для обозначения чисел 4, 10, 20 и 100 использовались повторения коллективных символов. Эта система, которая называется кхарошти, постепенно уступила место другой, известной под названием брахми, где буквами алфавита обозначались единицы (начиная с четырех), десятки, сотни и тысячи. Переход от кхарошти к брахми происходил в те годы, когда в Греции, вскоре после вторжения в Индию Александра Македонского, ионическая система счисления вытеснила аттическую. 

Вполне  возможно, что переход от кхарошти к брахми происходил под влиянием греков, но сейчас вряд ли возможно хоть как-то проследить или восстановить этот переход от древних индийских форм к системе, от которой произошли наши системы счисления. Надписи, найденные в Нана-Гат и Насике, относящиеся к первым векам до нашей эры и первым векам нашей эры, по-видимому, содержат обозначения чисел, которые были прямыми предшественниками тех, которые получили теперь название индо-арабской системы. Первоначально в этой системе не было ни позиционного принципа, ни символа нуля. Оба эти элементы вошли в индийскую систему к 8–9 вв. вместе с обозначениями деванагари. Здесь мы впервые встречаемся с элементами современной системы счисления: индийская система была десятичной, цифровой и позиционной. При желании можно даже усмотреть некоторое сходство в начертании современных цифр и цифр деванагари.

Напомним, что позиционная система счисления с нулем возникла не в Индии, поскольку за много веков до этого она использовалась в Древнем Вавилоне в связи с шестидесятиричной системой. Поскольку индийские астрономы использовали шестидесятиричные дроби, вполне возможно, что это навело их на мысль перенести позиционный принцип с шестидесятиричных дробей на целые числа, записанные в десятичной системе. В итоге произошел сдвиг, приведший к современной системе счисления. Не исключена также возможность, что такой переход, по крайней мере отчасти, произошел в Греции, скорее всего в Александрии, и оттуда распространился в Индию. В пользу последнего предположения свидетельствует сходство кружка, обозначающего нуль, с начертанием греческой буквы омикрон. Однако происхождение индийского символа для нуля окутано тайной, так как первое достоверное свидетельство его появления в Индии датируется лишь концом 9 в. Как ни странно, ни греки, ни индийцы не включили в свои системы счисления десятичные дроби, но именно индийцам мы обязаны современной системой записи обыкновенных дробей с числителем, расположенным над знаменателем (но без горизонтальной черты, отделяющей числитель от знаменателя).

Аравия

  

Современную систему обозначения чисел часто  называют арабской, хотя ясно, что она  берет начало не из Аравии. До хиджры арабы записывали числа словами, но затем, как это делали ранее греки, они стали обозначать числа буквами своего алфавита. В 772 индийский трактат «Сидданта» был привезен в Багдад и переведен на арабский, после чего стали использоваться две системы записи чисел: в астрономии по-прежнему употребляли алфавитную систему, в торговых расчетах купцы стали применять систему, заимствованную из Индии. Но даже среди тех, кто пользовался индийской системой, начертания цифр, как и в Индии, сильно варьировали. Эти две системы счисления были широко распространены и после распада арабского халифата. В его восточной части пользовались системой, аналогичной той, которая и сейчас встречается в арабском мире.

Западная Европа

 

Первым  европейским ученым, о котором  достоверно известно, что он ввел в употребление в Европе арабские цифры, был Герберт, работавший в Испании и позднее (в 999-м) ставший папой Сильвестром II. В 12 в. Хуан из Севильи перевел на латынь трактат De numero indorum (Об индийских числах) арабского математика Аль-Хорезми. Когда в следующем веке индийские обозначения стали широко известными, новая система получила название алгоритм – от искаженного Аль-Хорезми. Через пару столетий европейские алгоритмики одержали верх и над абацистами, и над теми, кто пользовался римскими цифрами в вычислениях с целыми числами, но лишь с 1585 индо-арабская система обозначений, систематически расширяясь, стала использоваться и применительно к дробям.

                                                                 Заключение

 

Подводя итог исследования темы, следует отметить, что история систем счисления восходит к тому далекому прошлому, когда человек для изображения требуемого числа пользовался насечками на палке или ссыпал камешки в мешочек. Эту систему представления чисел ученые назвали единичной или палочной.

Человек, совершенствуя  искусство счета, проделал огромный путь - от засечек на дереве до современного компьютера. Все достижения вычислительной культуры человека берут свое начало в единичной системе. Имеются  достаточно обоснованные предположения о том, что сначала человек изобрел числа, а лишь затем другие письменные знаки. Эволюция единичной системы счисления постепенно привела к идее пересчитывания группами, а после к возникновению цифр и чисел, к позиционной цифровой их записи.

Используется  ли единичная система в наше время? Да. Малыши используют при счете пальцы рук, первоклассники осваивают арифметические операции при помощи счетных палочек.

В ходе своего развития человечество стремилось совершенствовать запись чисел. У разных народов в разное время употреблялись различные системы счисления. Непозиционные системы счисления не получили широкого распространения в современном обществе. История распорядилась так, что человечество в своей практике использует в основном только одну непозиционную систему счисления - римскую. Очевидными являются неудобства записи чисел в подобных системах. При работе с большими числами необходимо придумывать новые символы (цифры), причем этот процесс может продолжаться до бесконечности. Кроме того правила формирования чисел достаточно сложны. Такая проблема у большинства позиционных систем счисления отсутствует. Тем не менее, запись чисел в римской системе находит ограниченное применение в настоящее время при нумерации разделов в книгах, веков в исторических трудах, при оформлении циферблатов часов и т.д.

Позиционные системы  счисления - результат длительного  исторического развития непозиционных  систем счисления. Хотя все позиционные  системы счисления являются равноправными, в повседневной жизни мы обычно пользуемся десятичной системой. Причины, по которым именно десятичная система оказалась общепринятой, совсем не математического характера. Очевидно, что эту систему мы предпочитаем остальным позиционным системам счисления лишь потому, что количество пальцев на руках у человека равно десяти, а именно пальцы первоначально служили основным "инструментом" для счета. По пальцам удобно считать от одного до десяти. Сосчитав до десяти, т.е. использовав до конца возможности нашего природного "счетного аппарата", естественно принять число 10 за новую более крупную единицу (единицу следующего разряда). Таким образом, именно счет по пальцам рук положил начало этой системе, которая кажется нам сейчас чем-то само собой разумеющимся. Основные арифметические операции в десятичной системе усваиваются нами еще в детстве. В повседневной практике мы оперируем ими подсознательно. По этой причине многие люди даже не догадываются, что существуют другие системы счисления.

Но десятичная система счисления далеко не сразу  заняла господствующее положение, которое она имеет сейчас. В разные исторические периоды многие народы пользовались системами счисления, отличными от десятичной. Многочисленные следы этих систем счисления сохранились до наших дней и в языках многих народов, и в принятых денежных системах, и в системах мер.

Работая над  данной темой, я узнала для себя очень  много интересного, разобралась  с принципом записи чисел в  различных системах счисления.

В заключение хочу добавить, что необходимость возникновения  счета много веков назад дала начало величайшей из наук - математике, которой мы обязаны всеми достижениями человечества.

Информация о работе Система счисления древнего мира