Автор: Пользователь скрыл имя, 19 Января 2012 в 19:11, дипломная работа
В данном дипломном проекте рассмотрим существующие стандарты в области цифрового видео, и алгоритм компрессии цифрового видеосигнала.
ПРИЛОЖЕНИЕ А
Алгоритм JPEG
Рассмотрим алгоритм подробнее. Пусть мы сжимаем 24-битное изображение.
Шаг 1.
Переводим изображение из цветового пространства RGB, с компонентами, отвечающими за красную (Red), зеленую (Green) и синюю (Blue) составляющие цвета точки, в цветовое пространство YCrCb (иногда называют YUV).
В нем Y — яркостная составляющая, а Cr, Cb — компоненты, отвечающие за цвет (хроматический красный и хроматический синий). За счет того, что человеческий глаз менее чувствителен к цвету, чем к яркости, появляется возможность архивировать массивы для Cr и Cb компонент с большими потерями и, соответственно, большими коэффициентами сжатия. Подобное преобразование уже давно используется в телевидении. На сигналы, отвечающие за цвет, там выделяется более узкая полоса частот.
Упрощенно перевод из цветового пространства RGB в цветовое пространство YCrCb можно представить с помощью матрицы перехода:
Обратное преобразование осуществляется умножением вектора YUV на обратную матрицу.
Шаг 2.
Разбиваем исходное изображение на матрицы 8х8. Формируем из каждой три рабочие матрицы ДКП — по 8 бит отдельно для каждой компоненты. При больших коэффициентах сжатия этот шаг может выполняться чуть сложнее. Изображение делится по компоненте Y — как и в первом случае, а для компонент Cr и Cb матрицы набираются через строчку и через столбец. Т.е. из исходной матрицы размером 16x16 получается только одна рабочая матрица ДКП. При этом, как нетрудно заметить, мы теряем 3/4 полезной информации о цветовых составляющих изображения и получаем сразу сжатие в два раза. Мы можем поступать так благодаря работе в пространстве YCrCb. На результирующем RGB изображении, как показала практика, это сказывается несильно.
Шаг 3.
Применяем ДКП к каждой рабочей матрице. При этом мы получаем матрицу, в которой коэффициенты в левом верхнем углу соответствуют низкочастотной составляющей изображения, а в правом нижнем — высокочастотной.
В упрощенном виде это преобразование можно представить так:
где
Шаг 4.
Производим квантование. В принципе, это просто деление рабочей матрицы на матрицу квантования поэлементно. Для каждой компоненты (Y, U и V), в общем случае, задается своя матрица квантования q[u,v] (далее МК).
На этом шаге осуществляется управление степенью сжатия, и происходят самые большие потери. Понятно, что, задавая МК с большими коэффициентами, мы получим больше нулей и, следовательно, большую степень сжатия.
В стандарт JPEG включены рекомендованные МК, построенные опытным путем. Матрицы для большего или меньшего коэффициентов сжатия получают путем умножения исходной матрицы на некоторое число gamma.
С квантованием
связаны и специфические
Шаг 5.
Переводим матрицу 8x8 в 64-элементный вектор при помощи “зигзаг”-сканирования, т.е. берем элементы с индексами (0,0), (0,1), (1,0), (2,0)...
Таким образом, в начале вектора мы получаем коэффициенты матрицы, соответствующие низким частотам, а в конце — высоким.
Шаг 6.
Свертываем вектор с помощью алгоритма группового кодирования. При этом получаем пары типа (пропустить, число), где “пропустить” является счетчиком пропускаемых нулей, а “число” — значение, которое необходимо поставить в следующую ячейку. Так, вектор 42 3 0 0 0 -2 0 0 0 0 1 ... будет свернут в пары (0,42) (0,3) (3,-2) (4,1) ... .
Шаг 7.
Свертываем получившиеся пары кодированием по Хаффману с фиксированной таблицей.
Процесс восстановления изображения в этом алгоритме полностью симметричен. Метод позволяет сжимать некоторые изображения в 10-15 раз без серьезных потерь.
Конвейер операций, используемый в
алгоритме JPEG.
Существенными положительными сторонами алгоритма является то, что:
Отрицательными сторонами алгоритма является то, что:
Как уже говорилось, стандартизован JPEG относительно недавно — в 1991 году. Но уже тогда существовали алгоритмы, сжимающие сильнее при меньших потерях качества. Дело в том, что действия разработчиков стандарта были ограничены мощностью существовавшей на тот момент техники. То есть даже на персональном компьютере алгоритм должен был работать меньше минуты на среднем изображении, а его аппаратная реализация должна быть относительно простой и дешевой. Алгоритм должен был быть симметричным (время разархивации примерно равно времени архивации).
Последнее требование сделало возможным появление таких игрушек, как цифровые фотоаппараты — устройства, размером с небольшую видеокамеру, снимающие 24-битовые фотографии на 10-20 Мб флэш карту с интерфейсом PCMCIA. Потом эта карта вставляется в разъем на вашем лэптопе и соответствующая программа позволяет считать изображения. Не правда ли, если бы алгоритм был несимметричен, было бы неприятно долго ждать, пока аппарат “перезарядится” — сожмет изображение.
Не очень приятным
свойством JPEG является также то, что
нередко горизонтальные и вертикальные
полосы на дисплее абсолютно не видны
и могут проявиться только при
печати в виде муарового узора. Он
возникает при наложении
Широкое применение JPEG долгое время сдерживалось, пожалуй, лишь тем, что он оперирует 24-битными изображениями. Поэтому для того, чтобы с приемлемым качеством посмотреть картинку на обычном мониторе в 256-цветной палитре, требовалось применение соответствующих алгоритмов и, следовательно, определенное время. В приложениях, ориентированных на придирчивого пользователя, таких, например, как игры, подобные задержки неприемлемы. Кроме того, если имеющиеся у вас изображения, допустим, в 8-битном формате GIF перевести в 24-битный JPEG, а потом обратно в GIF для просмотра, то потеря качества произойдет дважды при обоих преобразованиях. Тем не менее, выигрыш в размерах архивов зачастую настолько велик (в 3-20 раз!), а потери качества настолько малы, что хранение изображений в JPEG оказывается очень эффективным.
Несколько слов необходимо сказать о модификациях этого алгоритма. Хотя JPEG и является стандартом ISO, формат его файлов не был зафиксирован. Пользуясь этим, производители создают свои, несовместимые между собой форматы, и, следовательно, могут изменить алгоритм. Так, внутренние таблицы алгоритма, рекомендованные ISO, заменяются ими на свои собственные. Кроме того, легкая неразбериха присутствует при задании степени потерь. Например, при тестировании выясняется, что “отличное” качество, “100%” и “10 баллов” дают существенно различающиеся картинки. При этом, кстати, “100%” качества не означают сжатие без потерь. Встречаются также варианты JPEG для специфических приложений.
Как стандарт ISO JPEG начинает все шире использоваться при обмене изображениями в компьютерных сетях. Поддерживается алгоритм JPEG в форматах Quick Time, PostScript Level 2, Tiff 6.0 и, на данный момент, занимает видное место в системах мультимедиа.
алгоритм упаковки сводится к перебору всех доменных блоков и подбору для каждого соответствующего ему рангового блока. Ниже приводится схема этого алгоритма.
for (all range blocks) {
min_distance = MaximumDistance;
Rij = image->CopyBlock(i,j);
for (all domain blocks) { // С поворотами и отр.
current=Координаты тек. преобразования;
D=image->CopyBlock(current);
current_distance = Rij.L2distance(D);
if(current_distance < min_distance) {
// Если коэффициенты best хуже:
min_distance = current_distance;
best = current;
}
} //Next range
Save_Coefficients_to_file(
} //Next domain
Как видно из приведенного алгоритма, для каждого рангового блока делаем его проверку со всеми возможными доменными блоками (в том числе с прошедшими преобразование симметрии), находим вариант с наименьшей мерой L2 (наименьшим среднеквадратичным отклонением) и сохраняем коэффициенты этого преобразования в файл. Коэффициенты — это (1) координаты найденного блока, (2) число от 0 до 7, характеризующее преобразование симметрии (поворот, отражение блока), и (3) сдвиг по яркости для этой пары блоков. Сдвиг по яркости вычисляется как:
,
где rij — значения пикселов рангового блока (R), а dij — значения пикселов доменного блока (D). При этом мера считается как:
.
Мы не вычисляем квадратного корня из L2 меры и не делим ее на n, поскольку данные преобразования монотонны и не помешают нам найти экстремум, однако мы сможем выполнять на две операции меньше для каждого блока.
Посчитаем количество
операций, необходимых нам для
сжатия изображения в градациях серого
256 цветов 512х512 пикселов при размере блока
8 пикселов:
|
Таким образом, нам удалось уменьшить число операций алгоритма компрессии до вполне вычисляемых (пусть и за несколько часов) величин.
Декомпрессия алгоритма фрактального сжатия чрезвычайно проста. Необходимо провести несколько итераций трехмерных аффинных преобразований, коэффициенты которых были получены на этапе компрессии.
В качестве начального может быть взято абсолютно любое изображение (например, абсолютно черное), поскольку соответствующий математический аппарат гарантирует нам сходимость последовательности изображений, получаемых в ходе итераций IFS, к неподвижному изображению (близкому к исходному). Обычно для этого достаточно 16 итераций.
Прочитаем из файла
коэффициенты всех блоков;
Создадим черное изображение нужного
размера;
Until(изображение не станет неподвижным){
For(every range (R)){
D=image->CopyBlock(D_coord_
For(every pixel(i,j) in the block{
R
ij
= 0.75D
ij
+ o
R
;
} //Next pixel
Информация о работе Разработка программы компрессий цифрового видеосигнала