Автор: Пользователь скрыл имя, 21 Ноября 2010 в 22:42, реферат
Протокол ARP поддерживает на каждом интерфейсе сетевого адаптера или маршрутизатора отдельную ARP-таблицу, в которой в ходе функционирования сети накапливается информация о соответствии между IP-адресами и MAC-адресами других интерфейсов данной сети. Первоначально, при включении компьютера или маршрутизатора в сеть все его ARP-таблицы пусты.
1. На первом шаге происходит передача от протокола IP протоколу ARP примерно такого сообщения: «Какой МАС-адрес имеет интерфейс с адресом IP1?»
2. Работа протокола ARP начинается с просмотра ARP-таблицы соответствующего интерфейса. Предположим, что среди содержащихся в ней записей отсутствует запрашиваемый IP-адрес.
3. В этом случае исходящий IP-пакет, для которого оказалось невозможным определить локальный адрес из ARP-таблицы, запоминается в буфере, а протокол ARP формирует ARP-запрос, вкладывает его в кадр протокола Ethernet и широковещательно рассылает.
4. Все интерфейсы сети Ethernetl получают ARP-запрос и направляют его «своему» протоколу ARP. ARP сравнивает указанный в запросе адрес IP1 с IP-адресом интерфейса, на который поступил этот запрос. Протокол ARP, который констатировал совпадение (в данном случае это ARP маршрутизатора 1). формирует ARP-ответ.
Протокол разрешения адресов
Как уже было
сказано, никакой зависимости между
локальным адресом и его IP-
для определения локального адреса по IP-адресу используется протокол разрешения адресов (Address Resolution Protocol, ARP). Протокол разрешения адресов реализуется различным образом в зависимости от того, работает ли в данной сети протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещания или же какой-либо из протоколов глобальной сети (Х.25, Frame Ке1ау), которые, как правило, не поддерживают широковещательный доступ.
Рассмотрим работу протокола ARP в локальных сетях с широковещанием.
На рис. 17.4 показан фрагмент IP-сети, включающий две сети — Ethernetl (из трех конечных узлов А, В и С) и Ethernet2 (из двух конечных узлов D и Е). Сети подключены соответственно к интерфейсам 1 и 2 маршрутизатора. Каждый сетевой интерфейс имеет IP-адрес и МАС-адрес. Пусть в какой-то момент IP-модуль . зла С направляет пакет узлу D. Протокол IP узла С определил IP-адрес интерфейса следующего маршрутизатора — это IP1. Теперь, прежде чем упаковать пакет в кадр Ethernet и направить его маршрутизатору, необходимо определить соответствующий МАС-адрес. Для решения этой задачи протокол IP обращается к протоколу ARP. Протокол ARP поддерживает на каждом интерфейсе сетевого адаптера или маршрутизатора отдельную ARP-таблицу, в которой в ходе функционирования сети накапливается информация о соответствии между IP-адресами и MAC-адресами других интерфейсов данной сети. Первоначально, при включении компьютера или маршрутизатора в сеть все его ARP-таблицы пусты.
1. На первом шаге происходит передача от протокола IP протоколу ARP примерно такого сообщения: «Какой МАС-адрес имеет интерфейс с адресом IP1?»
2. Работа протокола ARP начинается с просмотра ARP-таблицы соответствующего интерфейса. Предположим, что среди содержащихся в ней записей отсутствует запрашиваемый IP-адрес.
3.
В этом случае исходящий IP-
4. Все интерфейсы сети Ethernetl получают ARP-запрос и направляют его «своему» протоколу ARP. ARP сравнивает указанный в запросе адрес IP1 с IP-адресом интерфейса, на который поступил этот запрос. Протокол ARP, который констатировал совпадение (в данном случае это ARP маршрутизатора 1). формирует ARP-ответ.
В ARP-ответе маршрутизатор указывает локальный адрес МАС1 своего интерфейса и отправляет его запрашивающему узлу (в данном примере узлу С), используя его локальный адрес. Широковещательный ответ в этом-случае не требуется, так как формат ARP-запроса предусматривает поля локального и сетевого адресов отправителя. Заметим, что зона распространения ARP-запросов
ограничивается сетью Ethernet 1, так как на пути широковещательных кадров барьером стоит маршрутизатор.
На рис. 17.5 показан
кадр Ethernet с вложенным в него ARP-сообщением.
ARP-запросы и ARP-ответы имеют один и тот
же формат. В табл. 17.2 в качестве примера
приведены значения полей реального ARP-запроса,
переданного по сети Ethernet1.
В поле типа сети для сетей Ethernet указывается значение 1. Поле типа протокола позволяет использовать протокол ARP не только с протоколом IP, но и с другими сетевыми протоколами. Для IP значение этого поля равно 0x0800. Длина локального адреса для протокола Ethernet равна 6 байт, а длина IP-адреса — 4 байт. В поле операции для ARP-запросов указывается значение 1, для ARP-ответов — значение 2.
Из этого запроса видно, что в сети Ethernet узел с IP-адресом 194.85.135.75 пытается определить, какой МАС-адрес имеет другой узел той же сети, сетевой адрес которого 194.85.135.65. Поле искомого локального адреса заполнено нулями.
Таким образом,
вид ARP-таблицы, в которую в ходе работы
сети были добавлены две упомянутые нами
записи, иллюстрирует табл. 17.4.
В ARP-таблицах существует два типа записей: динамические и статические. Статические записи создаются вручную с помощью утилиты агр и не имеют срока устаревания, точнее, они существуют до тех пор, пока компьютер или маршрутизатор остается включенным. Динамические записи должны периодически обновляться. Если запись не обновлялась в течение определенного времени (порядка нескольких минут), то она исключается из таблицы. Таким образом, в ARP-таблице содержатся записи не обо всех узлах сети, а только о тех, которые активно участвуют в сетевых операциях. Поскольку такой способ хранения информации называют кэшированием, ARP-таблицы иногда называют ARP-кэшем.
ПРИМЕЧАНИЕ
------------------------------
Некоторые реализации протоколов IP и ARP не ставят IP-пакеты в очередь на время ожидания ARP-ответов. Вместо этого IP-пакет просто уничтожается, а его восстановление возлагается на модуль TCP или прикладной процесс, работающий через протокол UDP. Такое восстановление выполняется за счет тайм-аутов и повторных передач. Повторная передача сообщения проходит успешно, так как первая попытка уже вызвала заполнение ARP-таблицы.
------------------------------
Совсем другой способ разрешения адресов используется в глобальных сетях, в которых не поддерживается широковещательная рассылка. Здесь администратору сети чаще всего приходится вручную формировать и помещать на какой-либо сервер ARP-таблицы, в которых он задает, например, соответствие IP-адресов адресам Х.25, имеющих для протокола IP смысл локальных адресов. В то же время сегодня наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети.
При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного для этих целей маршрутизатора. При включении каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе. Всякий раз, когда возникает необходимость определения по IP-адресу локального адреса, модуль ARP обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора. Работающий таким образом маршрутизатор называют ARP-сервером.
В некоторых случаях возникает обратная задача — нахождение IP-адреса по известному локальному адресу. Тогда в действие вступает реверсивный протокол ARP (Reverse Address Resolution Protocol, RARP). Этот протокол используется, например, при старте бездисковых станций, не знающих в начальный момент времени своего IP-адреса, но знающих МАС-адрес своего сетевого адаптера.
Протокол Proxy-ARP
Протокол Proxy-ARP — это одна из разновидностей протокола ARP, позволяющая отображать IP-адреса на аппаратные адреса в сетях, поддерживающих широковещание, даже в тех случаях, когда искомый узел находится за пределами данного домена коллизий.
На рис. 17.6 показана
сеть, один из конечных узлов которой
(компьютер D) работает в режиме удаленного
узла. Подробнее об этом режиме вы прочитаете
в главе 23 части V, а сейчас достаточно
знать, что конечный узел в таком режиме
обладает всеми возможностями компьютеров,
работающих в основной части сети Ethernet,
в частности, он имеет IP-адрес (IPd), относящийся
к той же сети. Для всех конечных узлов
сети Ethernet особенности подключения удаленного
узла (наличие модемов, коммутируемая
связь, протокол РРР) абсолютно прозрачны
— они взаимодействуют с ним обычным образом.
Чтобы такой режим взаимодействия стал
возможным, среди прочего, необходим протокол
Proxy-ARP. Поскольку удаленный узел подключен
к сети по протоколу РРР, то он, очевидно,
не имеет МАС-адреса.
Пусть приложение, работающее, например, на компьютере С, решает послать пакет компьютеру D. Ему известен IP-адрес узла назначения (IPd), однако как мы уже не раз отмечали, для передачи пакета по сети Ethernet его необходимо упаковать в кадр Ethernet и снабдить МАС-адресом. Для определения МАС-адреса IP-протокол узла С обращается к протоколу ARP, который посылает широковещательное сообщение с ARP-запросом. Если бы в этой сети на маршрутизаторе не был установлен протокол Proxy-ARP, на этот запрос не откликнулся бы ни один узел.
Однако протокол
Proxy-ARP установлен на маршрутизаторе и
работает следующим образом. При подключении
к сети удаленного узла D в таблицу ARP-маршрутизатора
заносится запись
IPD - MAC1 - int2,
которая означает, что:
* при поступлении ARP-запроса на маршрутизатор относительно адреса IPd в ARP-ответ будет помещен аппаратный адрес MAC1, соответствующий аппаратному адресу интерфейса 1 маршрутизатора;
* узел, имеющий адрес IPd, подключен к интерфейсу 2 маршрутизатора.
В ответ на посланный
узлом С широковещательный ARP-
Мы рассмотрели простейшую схему применения протокола Proxy-ARP, которая тем не менее достаточно полно отражает логику его работы.