Процессоры: классификация, сферы использования, характеристики

Автор: Пользователь скрыл имя, 03 Декабря 2010 в 12:14, реферат

Описание работы

Центральный процессор, история, модификации, типы, Intel, AMD.

Работа содержит 1 файл

Центра́льный проце́ссор.doc

— 875.50 Кб (Скачать)

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Ангарская государственная  техническая академия

ФАКУЛЬТЕТ УПРАВЛЕНИЯ И БИЗНЕСА

КАФЕДРА РИПР 
 
 
 

РЕФЕРАТ

ПО  КУРСУ ИНФОРМАТИКА

ТЕМА: Процессоры: классификация, сферы              использования, характеристики

                 
                 
                 
                 
                 
                 
                     Выполнил:

                  Студент  группы МАХПзу-08-1

                  Солод*** В.Ю. 

                  Приняла:

                  Старший преподаватель

                  кафедры      ПЭ и ИИТ

                  *в****ик*ва Н.Г.

                 
                 
                  Подпись    

 
г. Ангарск 2010 г.

 

Введение

      Первый процессор Intel 4004, увидевший свет в 1971 году. Он использовал 2300 транзисторов, работал от напряжения 12 В и мог адресовать до 640 байт памяти. Ему не требовалось никакого радиатора.

     

     Все началось 22-го марта 1993 года. Именно тогда Intel представляет первые процессоры под  торговой маркой Pentium. 

     Современные образцы:

       

     Процессор Intel® LGA1366 Core i7                                (самый мощный процессор от Intel) 

      Процессор AMD AM3 Phenom II X4 (четырех-ядерный процессор от AMD) 

 

Общие сведения

     Центра́льный  проце́ссор (ЦП; англ. central processing unit, CPU, дословно — центральное вычислительное устройство) — исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающий за выполнение операций, заданных программами.

     Современные ЦП, выполняемые в виде отдельных  микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших интегральных схем (СБИС).

     Изначально  термин Центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

     Ранние  ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных  для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека.

   
Архитектура фон Неймана

     Большинство современных процессоров для  персональных компьютеров в общем  основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом.

     Д. фон Нейман придумал схему постройки  компьютера в 1946 году.

     Важнейшие этапы этого процесса приведены  ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

     Этапы цикла выполнения:

    1. Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения;
    2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;
    3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;
    4. Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;
    5. Снова выполняется п. 1.

     Данный  цикл выполняется неизменно, и именно он называется процессом (откуда и произошло  название устройства).

     Во  время процесса процессор считывает  последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода — тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки прерывания.

     Команды центрального процессора являются самым  нижним уровнем управления компьютером, поэтому выполнение каждой команды  неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

     Скорость  перехода от одного этапа цикла к  другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.

 

Конвейерная архитектура

     Конвейерная архитектура (pipelining) была введена в  центральный процессор с целью  повышения быстродействия. Обычно для  выполнения каждой команды требуется  осуществить некоторое количество однотипных операций, например: выборка  команды из ОЗУ, дешифрация команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера. Например, конвейер микропроцессора с архитектурой MIPS-I содержит четыре стадии:

    • получение и декодирование инструкции (Fetch)
    • адресация и выборка операнда из ОЗУ (Memory access)
    • выполнение арифметических операций (Arithmetic Operation)
    • сохранение результата операции (Store)

     После освобождения k-й ступени конвейера  она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной в n ступеней займёт n единиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.

     Действительно, при отсутствии конвейера выполнение команды займёт n единиц времени (так  как для выполнения команды по прежнему необходимо выполнять выборку, дешифрацию и т. д.), и для исполнения m команд понадобится  единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполнения m команд понадобится всего лишь n + m единиц времени.

     Некоторые современные процессоры имеют более 30 ступеней в конвейере, что увеличивает производительность процессора, однако приводит к большому времени простоя (например, в случае ошибки в предсказании условного перехода.)

Суперскалярная  архитектура

     Способность выполнения нескольких машинных инструкций за один такт процессора. Появление этой технологии привело к существенному увеличению производительности.

     CISC-процессоры

     Complex Instruction Set Computer — вычисления со  сложным набором команд. Процессорная  архитектура, основанная на усложнённом  наборе команд. Типичными представителями CISC является семейство микропроцессоров Intel x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд).

     RISC-процессоры

     Reduced Instruction Set Computer — вычисления с  сокращённым набором команд. Архитектура  процессоров, построенная на основе сокращённого набора команд. Характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком (John Cocke) из IBM Research, название придумано Дэвидом Паттерсоном (David Patterson).

     Среди первых реализаций этой архитектуры  были процессоры MIPS, PowerPC, SPARC, Alpha, PA-RISC. В мобильных устройствах широко используются ARM-процессоры.

     MISC-процессоры

     Minimum Instruction Set Computer — вычисления с  минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC-процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20-30 команд).

Многоядерные  процессоры

     Содержат  несколько процессорных ядер в одном  корпусе (на одном или нескольких кристаллах).

     Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию мультипроцессорности.

     Двухъядерность  процессоров включает такие понятия, как наличие логических и физических ядер: например двухъядерный процессор Intel Core Duo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Quad состоит из четырёх физических ядер, что существенно влияет на скорость его работы.

     10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхъядерные процессоры для серверов AMD Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barcelona.[1] 19 ноября 2007 года вышел в продажу четырёхъядерный процессор для домашних компьютеров AMD Phenom.[2] Эти процессоры реализуют новую микроархитектуру K8L (K10).

     27 сентября 2006 года Intel продемонстрировала  прототип 80-ядерного процессора. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс, а это в свою очередь ожидается к 2010 году.

     26 октября 2009 года Tilera анонсировала 100-ядерный процессор широкого назначения серии TILE-Gx. Каждое процессорное ядро представляет собой отдельный процессор с кэшем 1, 2 и 3 уровней. Ядра, память и системная шина связаны посредством технологии Mesh Network. Процессоры производятся по 40-нм нормам техпроцесса и работают на тактовой частоте 1,5 ГГц. Выпуск 100-ядерных процессоров назначен на начало 2011 года.

     На  данный момент массово доступны двух-, четырёх- и шестиядерные процессоры, в частности Intel Core 2 Duo на 65-нм ядре Conroe (позднее на 45-нм ядре Wolfdale) и Athlon 64 X2 на базе микроархитектуры K8. В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Потомком этого процессора стал Intel Core 2 Quad на ядре Yorkfield (45 нм), архитектурно схожем с Kentsfield но имеющем больший объём кэша и рабочие частоты.

     Компания AMD пошла по собственному пути, изготовляя четырёхъядерные процессоры единым кристаллом (в отличие от Intel, первые четырехъядерные процессоры которой  представляют собой фактически склейку  двух двухъядерных кристаллов). Несмотря на всю прогрессивность подобного подхода первый «четырёхъядерник» фирмы, получивший название AMD Phenom X4, получился не слишком удачным. Его отставание от современных ему процессоров конкурента составляло от 5 до 30 и более процентов в зависимости от модели и конкретных задач.

Информация о работе Процессоры: классификация, сферы использования, характеристики