Проблема создания искусственного интеллекта

Автор: Пользователь скрыл имя, 06 Февраля 2013 в 18:58, реферат

Описание работы

Однозначного ответа, что же такое «искусственный интеллект» на данный момент не существует. Каждый автор имеет своё мнение на этот счёт. Некоторые считают, что ИИ может быть создан на основе одной из методик перечисленных выше, другие считают, что создание ИИ невозможно именно на текущем этапе развития человечества, третьи – вообще в принципе отрицают возможность создания ИИ.

Содержание

Вступление
1. Базовые положения
2. Методики и подходы построения систем ИИ
3. Проблемы создания ИИ
4. Реализация систем ИИ
Заключение
Список использованных источников

Работа содержит 1 файл

197849.rtf

— 310.05 Кб (Скачать)

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ

«КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

 

 

 

 

 

 

 

 

 

 

 

 

 

РЕФЕРАТ

на тему:

«ПРОБЛЕМА СОЗДАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА»

 

 

 

 

 

 

 

 

 

 

КИЕВ - 2009

 

 

План

 

Вступление

Базовые положения

Методики и подходы построения систем ИИ

Проблемы создания ИИ

Реализация систем ИИ

Заключение

Список использованных источников

 

 

Вступление

 

В качестве самостоятельного научного направления искусственный интеллект (ИИ) существует уже более четверти века. Мнение общества, относительно специалистов данной области, постепенно менялось от скепсиса до уважения, и понимания перспектив данной области в будущем. В передовых странах, таких как США и Япония, работы в области интеллектуальных систем поддерживаются на всех уровнях - от рядовых граждан, до правительственных органов. Существует вполне обоснованное мнение, что именно исследования в области ИИ будут определять характер нынешнего информационного общества, которое уже фактически пришло на смену индустриальной эпохи, достигшей своей высшей точки расцвета в прошлом веке.

Начиная с 80-х годов прошлого века, произошло становление ИИ как особой научной дисциплины, сформировались её концептуальные модели, накопились специфические методы и приёмы, частично устоялись фундаментальные парадигмы. У специалистов старшего поколения, стоявших у истоков новой области исследований, складывается убеждение, что период бурного, хаотического развития кончился, и теперь наступает эра академических и целенаправленных исследований, рассчитанных на длительный период. [1]

 

 

Базовые положения

 

Слово интеллект (intelligence) происходит от латинского intellectus - ум, рассудок, разум. Соответственно искусственный интеллект (artificial intelligence) - ИИ обычно используется как свойство автоматических систем брать на себя отдельные функции интеллектуального труда человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий или событий.

Интеллектом обычно называют способность мозга решать поставленные (интеллектуальные) задачи путём приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения и адаптации их (знаний) к разнообразным обстоятельствам. В этом определении под термином «знания» подразумевается не только информация, которая поступает в мозг человека через органы чувств. Информация подобного рода конечно важна, но недостаточна для полноценной интеллектуальной деятельности. Всё дело в том, что окружающие нас объекты обладают свойством не только воздействовать на органы чувств, но и находиться во взаимодействии друг с другом. Для того чтобы осуществлять в окружающей среде интеллектуальную деятельность, или как минимум просто существовать, человеку необходимо иметь систему знаний, модель этого мира. В этой информационной модели окружающей среды реальные объекты, их свойства и взаимоотношения между ними не только отображаются и запоминаются, но и могут мозгом человека (мысленно) «целенаправленно преобразовываться». При этом важен тот момент, что формирование модели внешней среды происходит в процессе обучения, на опыте и адаптации к разнообразным обстоятельствам.

Под алгоритмом понимают точную, предписанную последовательность действий системы для решения любой поставленной задачи из некоторого данного класса задач.

Термин «алгоритм» происходит от имени узбекского математика Аль Хо Резми, который еще в 9 веке предложил к использованию простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, если для её решения найден соответствующий алгоритм. На самом деле, нахождение алгоритмов является естественной целью человека при решении разнообразных классов задач. Поиск алгоритма для задач некоторого типа связано со сложными рассуждениями, требующими немалой изобретательности и высокой квалификации. Считается, что подобного рода деятельность требует участия интеллекта человека. Задачи, связанные с поиском алгоритма решения класса задач определенного типа, обычно называют интеллектуальными задачами.

Что же относительно задач, алгоритмы, решения которых уже установлены, то, как отмечает известный учёный в области ИИ М. Минский, - «излишне приписывать им (ИИ) такое мистическое свойство, как интеллектуальность». После того, как алгоритм решения задачи найден, процесс решения задачи становится таким, что его могут в равной степени выполнить как человек, так и вычислительная машина (должным образом запрограммированная), не имеющая ни малейшего представления о сущности самой задачи. Требуется только, чтобы «лицо» (человек или ИИ), решающее поставленную задачу, было способно выполнять те элементарные операции, из которых складывается процесс решения, и, кроме того, чтобы оно («лицо») педантично и аккуратно руководствовалось предложенным алгоритмом. Человек, так же как и ИИ, действует в таких случаях, как говориться, чисто машинально и может успешно решать любую задачу рассматриваемого класса.

Представляется совершенно естественным исключить из класса интеллектуальных такие задачи, для которых существуют стандартные методы решения. Например, такими задачами могут быть чисто вычислительные задачи: решение системы линейных алгебраических уравнений, численное интегрирование дифференциальных уравнений и т. п. Для решения подобного рода задач имеются стандартные алгоритмы, представляющие собой определенную последовательность элементарных операций, которая может быть легко реализована в виде программы для вычислительной машины. В противоположность этому для широкого класса интеллектуальных задач, таких, как распознавание образов, игра в шахматы, доказательство теорем и т. п., - формальное разбиение процесса поиска решения на отдельные элементарные шаги часто оказывается весьма затруднительным, даже если само их решение теоретически несложно.

Т.е. в некотором роде можно перефразировать определение интеллекта, назвав его универсальным сверхалгоритмом, который способен создавать алгоритмы решения самых разнообразных, но в тоже время конкретно поставленных задач.

Стоит отметить, что профессия программиста, исходя из приведенного выше, по-сути является одной из самых интеллектуальных, поскольку продуктом деятельности программиста являются программы - алгоритмы в чистом виде. Поэтому, создание даже определенных элементов ИИ по-идее должно значительно повысить производительность его труда.

Деятельность мозга, направленную на решение интеллектуальных задач, называют мышлением, или интеллектуальной деятельностью. Интеллект и мышление связаны с решением таких задач, как доказательство теорем, логический анализ, распознавание ситуаций, планирование поведения, игры, также управление в условиях неопределенности. Характерными чертами интеллекта, проявляющимися в процессе решения задач, являются способность к обучению, обобщению, накоплению опыта (знаний и навыков) и адаптации к изменяющимся условиям в процессе решения задач. Благодаря этим качествам мозг может решать разнообразные задачи, а также легко перестраиваться с решения одной задачи на другую. Таким образом, мозг, наделенный интеллектом, является универсальным средством решения широкого спектра задач (в том числе и неформализованных) для которых нет стандартных, заранее известных методов решения.

Надо учитывать, что существуют и другие, чисто поведенческие (функциональные) определения. Так, согласно А. Н. Колмогорову, любая материальная система, с которой можно достаточно долго обсуждать проблемы науки, литературы или искусства, обладает интеллектом.

Другим примером поведенческой трактовки интеллекта может служить известное определение А. Тьюринга. Например, в разных комнатах находится люди и машина. Они не могут видеть друг друга, но имеют возможность общения (обмениваться сообщениями). Если в процессе диалога между участниками людям не удается установить, что один из участников - машина, то такую машину можно считать обладающей интеллектом. Интересен план имитации мышления, предложенный А. Тьюрингом. «Пытаясь имитировать интеллект взрослого человека - пишет Тьюринг - мы вынуждены много размышлять о том процессе, в результате которого человеческий мозг достиг своего настоящего состояния… Почему бы нам вместо того, чтобы пытаться создать программу, имитирующую интеллект взрослого человека, не попытаться создать программу, которая имитировала бы интеллект ребенка? Ведь если интеллект ребенка получает соответствующее воспитание, он становится интеллектом взрослого человека… Наш расчет состоит в том, что устройство, ему подобное, может быть легко запрограммировано… Таким образом, мы расчленим нашу проблему на две части: на задачу построения «программы-ребенка» и задачу «воспитания» этой программы». Следует отметить, что именно этот путь используют практически все современные системы ИИ. Ведь понятно, что практически невозможно вложить все знания в систему ИИ. Более того, только на этом пути проявятся перечисленные выше признаки интеллектуальной деятельности (накопление опыта, адаптация и т. п.). [5]

 

 

2. Методики и подходы построения систем ИИ

 

Существуют различные подходы к построению систем ИИ - логический подход, структурный, эволюционный, имитационный. Это разделение не является историческим, когда одно мнение постепенно сменялось другим, и различные подходы и методики существуют параллельно и сегодня. Поскольку по-настоящему полноценных систем искусственного интеллекта в настоящее время нет, то нельзя и утверждать, что какой-то подход является правильным, а какой-то - нет.

Для начала рассмотрим логический подход. Человек занимается отнюдь не только логическими измышлениями. Это высказывание конечно верно, но именно способность к логическому мышлению очень сильно отличает человека от животных. Основой для данного логического подхода служит Булевая алгебра. Каждый программист знаком с нею и с её использованием, хотя бы на примере логического оператора IF (если). Свое дальнейшее развитие Булевая алгебра получила в виде исчисления предикатов - в котором она расширена за счёт введения предметных символов, отношений между ними, кванторов существования и всеобщности.

Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом (правила логического вывода как отношения между ними). Каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машины доказательства теорем. Можно утверждать, что выражений алгебры не хватит для полноценной реализации ИИ, но стоит вспомнить, что основой всех существующих ЭВМ является бит - единица информации (или значение ячейки памяти), которая может принимать значения только логического 0 и 1. Было бы логично предположить, что всё, что возможно реализовать на ЭВМ, можно было бы реализовать и в виде логики предикатов. Хотя здесь ничего не упоминается о том, сколько на это уйдёт времени. Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечёткая логика. Её особенностью является то, что правдивость высказывания может принимать кроме значений да/нет (1/0) ещё и промежуточные значения - «не знаю» (0.5), «скорее да, чем нет» (0.75) и «скорее нет, чем да» (0.25). Такой подход больше похож на мышление человека, поскольку человек не часто отвечает только «да» или «нет».

Для большинства логических методов характерна большая трудоёмкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Данный подход требует эффективной реализации вычислительного процесса, и удовлетворительные результаты работы обычно гарантируются только при сравнительно небольшом размере базы данных.

Под структурным подходом подразумеваются попытки построения ИИ путём моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Ф. Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон. Позднее возникли и другие модели, известные под общим названием «нейронные сети» (НС). Модели эти различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных вариаций НС можно назвать НС с обратным распространением ошибки, сети Хопфилда и стохастические нейронные сети.

Нейронные сети наиболее успешно применяются в задачах распознавания образов, в том числе сильно зачумленных (нечётких). Также имеются примеры успешного применения НС для построения собственно систем ИИ.

Для моделей, построенных на основе строения человеческого мозга характерна не слишком большая выразительность, оприделённое распараллеливание алгоритмов и, благодаря последнему, высокая производительность параллельно реализованных НС. Для таких сетей характерно одно свойство, которое делает из очень схожими с человеческим мозгом - нейронные сети работают даже при условии недостаточной информации об окружающей среде, т.е. как и человек, они поставленный вопрос могут отвечать не только «да» и «нет» но и «не знаю точно, но скорее нет», «не знаю точно, но скорее да».

Довольно большое распространение получил эволюционный подход. При построении систем ИИ по такому подходу, основное внимание уделяется построению начальной модели и правилам, по которым она (модель) может изменяться (эволюционировать). Модель может быть составлена по самым различным методам, это могут быть и НС и набор логических правил и любая другая модель. После этого мы запускаем ИИ, и он, на основании проверки моделей, отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д.

Эволюционных моделей, как таковых, не существует, есть только эволюционные алгоритмы обучения, но модели, полученные при эволюционном подходе, имеют некоторые характерные особенности, что позволяет выделить их в отдельный класс. Такими особенностями являются перенесение основного внимания разработчика с построения модели на алгоритм её модификации и то, что полученные модели практически не сопутствуют извлечению новых знаний о среде, окружающей систему ИИ, то есть она (система) становится «вещью в себе».

Широко используется для построения систем ИИ также имитационный подход. Данный подход является классическим для кибернетики с одним из её базовых понятий - «чёрным ящиком» (ЧЯ). Чёрный ящик - это устройство, программный модуль или набор данных, информация о внутренней структуре и содержании которого отсутствуют, но известны спецификации входных и выходных данных. Объект, поведение которого имитируется, как раз и представляет собой такой «черный ящик». Не важно, что у него внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Таким образом моделируется другое свойство человека - способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит человеку массу времени, особенно в начале его жизни. К недостаткам имитационного подхода можно отнести низкую информационную способность большинства моделей, построенных с его помощью.

Информация о работе Проблема создания искусственного интеллекта