Представление знаний в информационных системах

Автор: Пользователь скрыл имя, 20 Марта 2011 в 14:02, реферат

Описание работы

Технология экспертных систем является одним из направлений новой области исследования, которая получила наименование искусственного интеллекта. Исследования в этой области сконцентрированы на разработке и внедрении компьютерных программ, способных имитировать, воспроизводить те области деятельности человека, которые требуют мышления, определенного мастерства и накопленного опыта.

Содержание

Введение.
Глава 1. Введение в сущность экспертных систем. 4 ст.
1.1. История развития экспертных систем. 4 ст.
1.2. Определение экспертных систем. Главное достоинство и назначение
экспертных систем. 9 ст.
Глава 2. Инструментальные средства разработки. 13 ст.
2.1. Общая характеристика инструментальных средств для построения экспертных систем. 13 ст.
2.2. Оболочки экспертных систем. 15 ст.
2.3. Языки программирования высокого уровня. 18 ст.
2.3.1. Языки описания порождающих правил. 19 ст.
2.3.2. Объектно-ориентированные языки. 20 ст.
2.3.3. Языки логического программирования экспертных систем. 22 ст.
2.3.4. Многофункциональные программные среды. 23 ст.
Глава 3. Использование инструментальных средств. 25 ст.
3.1. Характерные сложности и способы их избежать. 25 ст.
3.2. Выбор подходящего инструментария для разработки экспертной
системы. 26 ст.
3.3. Практическое освоение инструментальных средств. 30 ст.
Заключение .
Список используемой литературы. 33 ст.

Работа содержит 1 файл

Реферат по представлениям знаний.docx

— 97.17 Кб (Скачать)

Оглавление:

Введение.

Глава 1. Введение в сущность экспертных систем.                                           4 ст.

1.1. История развития  экспертных систем.      4 ст.

  1.2. Определение  экспертных систем. Главное достоинство  и назначение

экспертных систем.          9 ст.

Глава 2. Инструментальные средства разработки.              13 ст.

2.1. Общая характеристика  инструментальных средств для  построения экспертных систем.                                                                                                 13 ст.

2.2. Оболочки  экспертных систем.                                                                        15 ст.

2.3. Языки программирования  высокого уровня.                                                18 ст.

2.3.1. Языки  описания порождающих правил.                                                     19 ст. 

2.3.2. Объектно-ориентированные  языки.                                                            20 ст. 

2.3.3. Языки  логического программирования экспертных  систем.                    22 ст. 

2.3.4. Многофункциональные  программные среды.                                            23 ст. 

Глава 3. Использование инструментальных средств.                                   25 ст. 

3.1. Характерные  сложности и способы их избежать.                                        25 ст. 

3.2. Выбор  подходящего инструментария для  разработки экспертной 

системы.                                                                                                                   26 ст. 

3.3. Практическое  освоение инструментальных средств.                                   30 ст. 

Заключение .

Список используемой литературы.                                                                       33 ст. 

     Введение 

     Технология  экспертных систем является одним из направлений новой области исследования, которая получила наименование искусственного интеллекта. Исследования в этой области сконцентрированы на разработке и внедрении компьютерных программ, способных имитировать, воспроизводить те области деятельности человека, которые требуют мышления, определенного мастерства и накопленного опыта. К ним относятся задачи принятия решений, распознавания образов и понимания человеческого языка. Эта технология уже успешно применяется в некоторых областях техники и жизни общества — органической химии, поиске полезных ископаемых, медицинской диагностике. Вот  в этом заключается актуальность. А точнее актуальность темы моей работы заключается в том что, именно интеллектуальные информационные технологии и экспертные системы являются последними прогрессами науки в области информатики и информационного общества. Именно над этим направлением трудятся многие ученые информатики, именно эта тема у всех на слуху, над ней трудятся, ее развивают. 

 

     Глава 1. Введение в сущность экспертных систем.

    1. История развития экспертных систем.

     Наиболее  известные ЭС, разработанные в 60-70-х  годах, стали в своих областях уже классическими. По происхождению, предметным областям и по преемственности применяемых идей, методов и инструментальных программных средств их можно разделить на несколько семейств.

     1. META-DENDRAL.Система DENDRAL позволяет определить наиболее вероятную структуру химического соединения по экспериментальным данным (маспектрографии, данным ядерном магнитного резонанса и др.).M-D автоматизирует процесс приобретения знаний для DENDRAL. Она генерирует правила построения фрагментов химических структур.

     2. MYCIN-EMYCIN-TEIREIAS-PUFF-NEOMYCIN. Это семейство медицинских ЭС и сервисных программных средств для их построения.

     3. PROSPECTOR-KAS. PROSPECTOR- предназначена для поиска (предсказания) месторождений на основе геологических анализов. KAS- система приобретения знаний для PROSPECTOR.

     4. CASNET-EXPERT.  Система CASNET- медицинская ЭС для диагностики выдачи рекомендаций по лечению глазных заболеваний. На ее основе разработан язык инженерии знаний EXPERT, с помощью которой создан ряд других медицинских диагностических систем.

     5. HEARSAY-HEARSAY-2-HEARSAY-3-AGE. Первые две системы этого ряда являются развитием интеллектуальной системы распознавания слитной человеческой речи, слова которой берутся из заданного словаря. Эти системы отличаются оригинальной структурой, основанной на использовании доски объявлений - глобальной базы знаний, содержащей текущие результаты работы системы. В дальнейшем на основе этих систем были созданы инструментальные системы HEARSAY-3 и AGE (Attempt to Generalize- попытка общения) для построения экспертной системы.

     6. Системы AM (Artifical Mathematician- искусственный  математик) и EURISCO были разработаны в Станфордском университете доктором Д. Ленатом для исследовательских и учебных целей. Ленат считает, что эффективность любой ЭС определяется закладываемыми в нее знаниями. По его мнению, чтобы система была способна к обучению, в нее должно быть введено около миллиона сведений общего характера. Это примерно соответствует объему информации, каким располагает четырехлетний ребенок со средними способностями. Ленат также считает, что путь создания узкоспециализированных ЭС с уменьшенным объемом знаний ведет к тупику.

     В систему AM первоначально было заложено около 100 правил вывода и более 200 эвристических алгоритмов обучения, позволяющих строить произвольные математические теории и представления. Сначала результаты работы системы были весьма многообещающими. Она могла сформулировать понятия натурального ряда и простых чисел. Кроме того, она синтезировала вариант гипотезы Гольдбаха о том, что каждое четное число, большее двух, можно представить в виде суммы двух простых чисел. До сих пор не удалось ни найти доказательства данной гипотезы, ни опровергнуть ее. Дальнейшее развитие системы замедлилось и было отмечено, что, несмотря на проявленные, на первых порах “математические способности”, система не может синтезировать новых эвристических правил, ее возможности определяются только теми эвристиками, что были в нее изначально заложены.

     При разработке системы EURISCO была предпринята  попытка преодолеть указанные недостатки системы AM. Как и в начале эксплуатации AM, первые результаты, полученные с помощью EURISCO, были эффективными. Сообщалось, что система EURISCO может успешно участвовать в очень сложных играх. С ее помощью в военно-стратегической игре, проводимой ВМФ США, была разработана стратегия, содержащая ряд оригинальных тактических ходов. Согласно одному из них, например, предлагалось взрывать свои корабли, получившие повреждения. При этом корабли, оставшиеся неповрежденными, получает необходимое пространство для выполнения маневра.

     Однако  через некоторое время обнаружилось, что система не всегда корректно  переопределяет первоначально заложенные в нее правила. Так, например, она  стала нарушать строгое предписание  обращаться  к программистам с вопросами только в определенное время суток. Т.о., система EURISCO, так же как и ее предшественница, остановилась в своем развитии, достигнув предела, определенного, в конечном счете, ее разработчиком.

     Далее рассмотрим проблемы, возникающие при  создании ЭС и. перспективы разработки.

     С 70-х годов ЭС стали ведущим  направлением в области искусственного интеллекта. При их разработке нашли применение методы ИИ, разработанные ранее: методы представления знаний, логического вывода, эвристического поиска, распознавания предложений на естественном языке и др. Можно утверждать, что именно ЭС позволили получить очень большой коммерческий эффект от применения таких мощных методов. В этом - их особая роль.

     Каталог ЭС и инструментальных  программных  средств для их разработки, опубликованный в США в 1987 году, содержит более 1000 систем В развитых зарубежных странах сотни фирм занимаются их разработкой и внедрением. Имеются и отечественные разработки ЭС, в том числе - нашедший промышленное применение.

     Однако  уже на начальных этапах выявились  серьезные принципиальные трудности,  препятствующие более широкому распространению ЭС и серьезно замедляющие и осложняющие их разработку. Они вполне естественных и вытекают из самих принципов разработки ЭС.

     Первая  трудность возникает в связи  с постановкой задач. Большинство  заказчиков, планируя разработку ЭС, вследствие недостаточной компетентности в вопросах применения методов ИИ, склонна значительно преувеличивать ожидаемые возможности системы. Заказчик желает увидеть в ней самостоятельно мыслящего эксперта в исследуемой области, способного решать широкий круг задач. Отсюда и типичные первоначальные постановки задачи по созданию ЭС: “Разработать ЭС по обработке изображения”; “Создать медицинские ЭС по лечению заболеваний опорно-двигательного аппарата у детей”. Однако, как уже отмечалось, мощность эвристических методов решения задач при увеличении общности их постановки резко уменьшается. Поэтому наиболее целесообразно (особенно при попытке создания ЭС в области, для которой у разработчиков еще нет опыта создания подобных систем) ограничиться для начала не слишком сложной обозримой задачей в рассматриваемой области, для решения которой нет простого алгоритмического способа (то есть неочевидно, как написать программу для решения этой задачи, не используя методы обработки знаний). Кроме того, важно, чтобы уже существовала сложившаяся методика решения этой задачи “вручную” или какими-либо расчетными методами. Для успешной разработки ЭС необходимы не только четкая и конкретная постановка задач, но и разработка подробного описания “ручного” метода ее решения. Если это сделать затруднительно, дальнейшая работа по построению ЭС теряет смысл.

     Вторая  и основная трудность - проблема приобретения (усвоения) знаний. Эта проблема возникает  при “передаче” знаний, которыми обладают эксперты-люди, ЭС. Разумеется, для того, чтобы “обучить” им компьютерную систему, прежде всего, требуется сформулировать, систематизировать и формализовать эти знания “на бумаге”. Это может показаться парадоксальным, но большинство экспертов (за исключением, может быть, математиков), успешно используя в повседневной деятельности свои обширные знания, испытывают большие затруднения при попытке сформулировать и представить в системном виде хотя бы основную часть этих знаний: иерархию используемых понятий, эвристики, алгоритмы, связи между ними. Оказывается, что для подобной формализации знаний необходим определенный систематический стиль мышления, более близкий математикам и программистам, чем, например, юристам и медикам. Кроме того, необходимы, с одной стороны, знания в области математической логики и методов представления знаний, с другой - знания возможности ЭВМ, из программного обеспечения, в частности, языков и систем программирования.

     Таким образом, выясняется, что для разработки ЭС необходимо участие в ней особого  рода специалистов, обладающих указанной  совокупностью знаний и выполняющих  функции “посредников” между  экспертами в предметной области и компьютерными (экспертными) системами. Они получили название инженеры знаний (в оригинале - knowledge engineers), а сам процесс разработки ЭС и других интеллектуальных программ, основанных на представлении и обработке знаний - инженерией знаний (knowledge engineering). В развитых зарубежных странах специальность “инженер знаний” введена во многих вузах, в нашей стране основы инженерии знаний изучаются пока в рамках специализаций по системному программированию. Функции эксперта и инженера знаний редко совмещаются в одном лице. Чаще функции инженера знаний выполняет разработчик ЭС. Как показал опыт многих разработок, для первоначального приобретения знаний, в которых участвуют эксперты, инженеры знаний и разработчики ЭС, требуется активная работа всех трех категорий специалистов. Она может длиться от нескольких недель до нескольких месяцев.

     На  этапе приобретения знаний могут  возникнуть трудности и психологического порядка: эксперт может препятствовать передаче своих знаний ЭС, полагая, что это снизит его престиж как специалиста и создаст предпосылки для замены его “машиной”. Однако эти опасения лишены оснований: ЭС “уверенно” работает лишь в типовых ситуациях, а также удобна в случаях, когда человек находится в состоянии стресса, в наиболее сложных ситуациях, требующих нестандартных рассуждений и оценок, эксперт- человек незаменим.

Информация о работе Представление знаний в информационных системах