Основные методы и средства защиты информации в сетях

Автор: Пользователь скрыл имя, 11 Марта 2012 в 14:18, реферат

Описание работы

Основной целью реферата является изучение и анализ методов и средств защиты информации в компьютерных сетях.
Для достижения указанной цели необходимо решить ряд задач:
 Рассмотреть угрозы безопасности и их классификацию;
 Охарактеризовать методы и средства защиты информации в сети;

Содержание

ВВЕДЕНИЕ
1. Основные положения теории защиты информации
1.1. Классификация угроз безопасности информации
1.2. Наиболее распространенные угрозы
1.3. Программные атаки
1.4. Вредоносное программное обеспечение
2. Основные методы и средства защиты информации в сетях
2.1 Физическая защита информации
2.2 Аппаратные средства защиты информации в КС
2.3 Программные средства защиты информации в КС
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ

Работа содержит 1 файл

реферат по информатике.doc

— 235.50 Кб (Скачать)

Другая характерная ошибка связана с резервным копированием. О его необходимости знают все, так же как и о том, что на случай возгорания нужно иметь огнетушитель. А вот о том, что резервные копии нельзя хранить в одном помещении с сервером, почему-то забывают. В результате, защитившись от информационных атак, фирмы оказываются беззащитными даже перед небольшим пожаром, в котором предусмотрительно сделанные копии гибнут вместе с сервером.

Часто, даже защитив серверы, забывают, что в защите нуждаются и всевозможные провода - кабельная система сети. Причем, нередко приходится опасаться не злоумышленников, а самых обыкновенных уборщиц, которые заслуженно считаются самыми страшными врагами локальных сетей. Лучший вариант защиты кабеля - это короба, но, в принципе, подойдет любой другой способ, позволяющий скрыть и надежно закрепить провода. Впрочем, не стоит упускать из вида и возможность подключения к ним извне для перехвата информации или создания помех, например, посредством разряда тока. Хотя, надо признать, что этот вариант мало распространен и замечен лишь при нарушениях работы крупных фирм.

Помимо Интернета, компьютеры включены еще в одну сеть - обычную электрическую. Именно с ней связана другая группа проблем, относящихся к физической безопасности серверов. Ни для кого не секрет, что качество современных силовых сетей далеко от идеального. Даже если нет никаких внешних признаков аномалий, очень часто напряжение в электросети выше или ниже нормы. При этом большинство людей даже не подозревают, что в их доме или офисе существуют какие-то проблемы с электропитанием.

Пониженное напряжение является наиболее распространенной аномалией и составляет около 85% от общего числа различных неполадок с электропитанием. Его обычная причина - дефицит электроэнергии, который особенно характерен для зимних месяцев. Повышенное напряжение почти всегда является следствием какой-либо аварии или повреждения проводки в помещении. Часто в результате отсоединения общего нулевого провода соседние фазы оказываются под напряжением 380 В. Бывает также, что высокое напряжение возникает в сети из-за неправильной коммутации проводов.

Источниками импульсных и высокочастотных помех могут стать разряды молний, включение или отключение мощных потребителей электроэнергии, аварии на подстанциях, а также работа некоторых бытовых электроприборов. Чаще всего такие помехи возникают в крупных городах и в промышленных зонах. Импульсы напряжения при длительности от наносекунд (10~9 с) до микросекунд (10~6 с) могут по амплитуде достигать нескольких тысяч вольт. Наиболее уязвимыми к таким помехам оказываются микропроцессоры и другие электронные компоненты. Нередко непогашенная импульсная помеха может привести к перезагрузке сервера или к ошибке в обработке данных. Встроенный блок питания компьютера, конечно, частично сглаживает броски напряжения, защищая электронные компоненты компьютера от выхода из строя, но остаточные помехи все равно снижают срок службы аппаратуры, а также приводят к росту температуры в блоке питания сервера.

Для защиты компьютеров от высокочастотных импульсных помех служат сетевые фильтры (например, марки Pilot), оберегающие технику от большинства помех и перепадов напряжения. Кроме того, компьютеры с важной информацией следует обязательно оснащать источником бесперебойного питания (UPS). Современные модели UPS не только поддерживают работу компьютера, когда пропадает питание, но и отсоединяют его от электросети, если параметры электросети выходят из допустимого диапазона.

 

2.2 Аппаратные средства защиты информации в КС

 

К аппаратным средствам защиты информации относятся электронные и электронно-механические устройства, включаемые в состав технических средств КС и выполняющие (самостоятельно или в едином комплексе с программными средствами) некоторые функции обеспечения информационной безопасности. Критерием отнесения устройства к аппаратным, а не к инженерно-техническим средствам защиты является обязательное включение в состав технических средств КС.

К основным аппаратным средствам защиты информации относятся:

• устройства для ввода идентифицирующей пользователя информации (магнитных и пластиковых карт, отпечатков пальцев и т.п.);

• устройства для шифрования информации;

• устройства для воспрепятствования несанкционированному включению рабочих станций и серверов (электронные замки и блокираторы).

Примеры вспомогательных аппаратных средств защиты информации:

• устройства уничтожения информации на магнитных носителях;

• устройства сигнализации о попытках несанкционированных действий пользователей КС и др.

Аппаратные средства привлекают все большее внимание специалистов не только потому, что их легче защитить от повреждений и других случайных или злоумышленных воздействий, но еще и потому, что аппаратная реализация функций выше по быстродействию, чем программная, а стоимость их неуклонно снижается.

 

2.3 Программные средства защиты информации в КС

 

Под программными средствами защиты информации понимают специальные программы, включаемые в состав программного обеспечения КС исключительно для выполнения защитных функций.

К основным программным средствам защиты информации относятся:

• программы идентификации и аутентификации пользователей КС;

• программы разграничения доступа пользователей к ресурсам КС;

• программы шифрования информации;

• программы защиты информационных ресурсов (системного и прикладного программного обеспечения, баз данных, компьютерных средств обучения и т. п.) от несанкционированного изменения, использования и копирования.

Надо понимать, что под идентификацией, применительно к обеспечению информационной безопасности КС, понимают однозначное распознавание уникального имени субъекта КС. Аутентификация означает подтверждение того, что предъявленное имя соответствует данному субъекту (подтверждение подлинности субъекта)

Также к программным средствам защиты информации относятся:

• программы уничтожения остаточной информации (в блоках оперативной памяти, временных файлах и т. п.);

• программы аудита (ведения регистрационных журналов) событий, связанных с безопасностью КС, для обеспечения возможности восстановления и доказательства факта происшествия этих событий;

• программы имитации работы с нарушителем (отвлечения его на получение якобы конфиденциальной информации);

• программы тестового контроля защищенности КС и др.

К преимуществам программных средств защиты информации относятся:

• простота тиражирования;

• гибкость (возможность настройки на различные условия применения, учитывающие специфику угроз информационной безопасности конкретных КС);

• простота применения — одни программные средства, например шифрования, работают в «прозрачном» (незаметном для пользователя) режиме, а другие не требуют от пользователя ни каких новых (по сравнению с другими программами) навыков;

• практически неограниченные возможности их развития путем внесения изменений для учета новых угроз безопасности информации.

 

Рис. 4. Пример пристыкованного программного средства защиты.

 

Рис. 5. Пример встроенного программного средства защиты.

 

К недостаткам программных средств защиты информации относятся:

• снижение эффективности КС за счет потребления ее ресурсов, требуемых для функционирование программ защиты;

• более низкая производительность (по сравнению с выполняющими аналогичные функции аппаратными средствами защиты, например шифрования);

• пристыкованность многих программных средств защиты (а не их встроенность в программное обеспечение КС, рис. 4 и 5), что создает для нарушителя принципиальную возможность их обхода;

• возможность злоумышленного изменения программных средств защиты в процессе эксплуатации КС.

Безопасность на уровне операционной системы

Операционная система является важнейшим программным компонентом любой вычислительной машины, поэтому от уровня реализации политики безопасности в каждой конкретной ОС во многом зависит и общая безопасность информационной системы.

Операционная система MS-DOS является ОС реального режима микропроцессора Intel, а потому здесь не может идти речи о разделении оперативной памяти между процессами. Все резидентные программы и основная программа используют общее пространство ОЗУ. Защита файлов отсутствует, о сетевой безопасности трудно сказать что-либо определенное, поскольку на том этапе развития ПО драйверы для сетевого взаимодействия разрабатывались не фирмой MicroSoft, а сторонними разработчиками.

Семейство операционных систем Windows 95, 98, Millenium – это клоны, изначально ориентированные на работу в домашних ЭВМ. Эти операционные системы используют уровни привилегий защищенного режима, но не делают никаких дополнительных проверок и не поддерживают системы дескрипторов безопасности. В результате этого любое приложение может получить доступ ко всему объему доступной оперативной памяти как с правами чтения, так и с правами записи. Меры сетевой безопасности присутствуют, однако, их реализация не на высоте. Более того, в версии Windows 95 была допущена основательная ошибка, позволяющая удаленно буквально за несколько пакетов приводить к "зависанию" ЭВМ, что также значительно подорвало репутацию ОС, в последующих версиях было сделано много шагов по улучшению сетевой безопасности этого клона.

Поколение операционных систем Windows NT, 2000 уже значительно более надежная разработка компании MicroSoft. Они являются действительно многопользовательскими системами, надежно защищающими файлы различных пользователей на жестком диске (правда, шифрование данных все же не производится и файлы можно без проблем прочитать, загрузившись с диска другой операционной системы – например, MS-DOS). Данные ОС активно используют возможности защищенного режима процессоров Intel, и могут надежно защитить данные и код процесса от других программ, если только он сам не захочет предоставлять к ним дополнительного доступа извне процесса.

За долгое время разработки было учтено множество различных сетевых атак и ошибок в системе безопасности. Исправления к ним выходили в виде блоков обновлений (англ. service pack).

Другая ветвь клонов растет от операционной системы UNIX. Эта ОС изначально разрабатывалась как сетевая и многопользовательская, а потому сразу же содержала в себе средства информационной безопасности. Практически все широко распространенные клоны UNIX прошли долгий путь разработки и по мере модификации учли все открытые за это время способы атак. Достаточно себя зарекомендовали : LINUX (S.U.S.E.), OpenBSD, FreeBSD, Sun Solaris. Естественно все сказанное относится к последним версиям этих операционных систем. Основные ошибки в этих системах относятся уже не к ядру, которое работает безукоризненно, а к системным и прикладным утилитам. Наличие ошибок в них часто приводит к потере всего запаса прочности системы.

Основные компоненты:

Локальный администратор безопасности – несет ответственность за несанкционированный доступ, проверяет полномочия пользователя на вход в систему, поддерживает:

Аудит – проверка правильности выполнения действий пользователя

Диспетчер учетных записей – поддержка БД пользователей их действий и взаимодействия с системой.

Монитор безопасности – проверяет имеет ли пользователь достаточные права доступа на объект

Журнал аудита – содержит информацию о входах пользователей, фиксирует работы с файлами, папками.

Пакет проверки подлинности – анализирует системные файлы, на предмет того, что они не заменены. MSV10 – пакет по умолчанию.

Windows XP дополнена:

можно назначать пароли для архивных копий

средства защиты от замены файлов

система разграничения … путем ввода пароля и создания учета записей пользователя. Архивацию может проводить пользователь, у которого есть такие права.

NTFS: контроль доступа к файлам и папкам

В XP и 2000 – более полное и глубокое дифференцирование прав доступа пользователя.

EFS – обеспечивает шифрование и дешифрование информации (файлы и папки) для ограничения доступа к данным.

Криптографические методы защиты

Криптография - это наука об обеспечении безопасности данных. Она занимается поисками решений четырех важных проблем безопасности - конфиденциальности, аутентификации, целостности и контроля участников взаимодействия. Шифрование - это преобразование данных в нечитабельную форму, используя ключи шифрования-расшифровки. Шифрование позволяет обеспечить конфиденциальность, сохраняя информацию в тайне от того, кому она не предназначена.

Криптография занимается поиском и исследованием математических методов преобразования информации.

Современная криптография включает в себя четыре крупных раздела:

симметричные криптосистемы;

криптосистемы с открытым ключом;

системы электронной подписи;

управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Шифрование дисков

Зашифрованный диск – это файл-контейнер, внутри которого могут находиться любые другие файлы или программы (они могут быть установлены и запущены прямо из этого зашифрованного файла). Этот диск доступен только после ввода пароля к файлу-контейнеру – тогда на компьютере появляется еще один диск, опознаваемый системой как логический и работа с которым не отличается от работы с любым другим диском. После отключения диска логический диск исчезает, он просто становится «невидимым».

На сегодняшний день наиболее распространенные программы для создания зашифрованных дисков – DriveCrypt, BestCrypt и PGPdisk. Каждая из них надежно защищена от удаленного взлома.

Общие черты программ:

- все изменения информации в файле-контейнере происходят сначала в оперативной памяти, т.е. жесткий диск всегда остается зашифрованным. Даже в случае зависания компьютера секретные данные так и остаются зашифрованными;

- программы могут блокировать скрытый логический диск по истечении определенного промежутка времени;

- все они недоверчиво относятся к временным файлам (своп-файлам). Есть возможность зашифровать всю конфиденциальную информацию, которая могла попасть в своп-файл. Очень эффективный метод скрытия информации, хранящейся в своп-файле – это вообще отключить его, при этом не забыв нарастить оперативную память компьютера;

- физика жесткого диска такова, что даже если поверх одних данных записать другие, то предыдущая запись полностью не сотрется. С помощью современных средств магнитной микроскопии (Magnetic Force Microscopy – MFM) их все равно можно восстановить. С помощью этих программ можно надежно удалять файлы с жесткого диска, не оставляя никаких следов их существования;

- все три программы сохраняют конфиденциальные данные в надежно зашифрованном виде на жестком диске и обеспечивают прозрачный доступ к этим данным из любой прикладной программы;

- они защищают зашифрованные файлы-контейнеры от случайного удаления;

- отлично справляются с троянскими приложениями и вирусами.

Способы идентификации пользователя

Прежде чем получить доступ к ВС, пользователь должен идентифицировать себя, а механизмы защиты сети затем подтверждают подлинность пользователя, т. е. проверяют, является ли пользователь действительно тем, за кого он себя выдает. В соответствии с логической моделью механизма защиты ВС размещены на рабочей ЭВМ, к которой подключен пользователь через свой терминал или каким-либо иным способом. Поэтому процедуры идентификации, подтверждения подлинности и наделения полномочиями выполняются в начале сеанса на местной рабочей ЭВМ.

Информация о работе Основные методы и средства защиты информации в сетях