Операционная система

Автор: Пользователь скрыл имя, 02 Марта 2013 в 18:35, реферат

Описание работы

Операционная система в наибольшей степени определяет облик всей вычислительной системы в целом. Несмотря на это, пользователи, активно использующие вычислительную технику, зачастую испытывают затруднения при попытке дать определение операционной системе. Частично это связано с тем, что ОС выполняет две по существу мало связанные функции: обеспечение пользователю-программисту удобств посредством предоставления для него расширенной машины и повышение эффективности использования компьютера путем рационального управления его ресурсами.

Содержание

1. Введение 3
1.1 ОС как расширенная машина 3
1.2 ОС как система управления ресурсами 3
2. Классификация ОС 4
2.1 Особенности алгоритмов управления ресурсами 4
2.1.1. Поддержка многозадачности. 4
2.1.2. Поддержка многопользовательского режима. 4
2.1.3. Вытесняющая и невытесняющая многозадачность. 4
2.1.4. Поддержка многонитевости. 4
2.1.5. Многопроцессорная обработка. 5
2.2 Особенности аппаратных платформ 5
2.3 Особенности областей использования 6
2.4 Особенности методов построения 6
3. Сетевые операционные системы 8
3.1 Структура сетевой операционной системы 8
3.2 Одноранговые сетевые ОС и ОС с выделенными серверами 10
3.3 ОС для рабочих групп и ОС для сетей масштаба предприятия 11
4. Процессы и нити в распределенных системах 14
4.1 Понятие "нить" 14
4.2 Различные способы организации вычислительного процесса с использованием нитей 14
4.3 Вопросы реализации нитей 16
4.4 Нити и RPC 16
5. Современные концепции и технологии проектирования операционных систем 17
5.1 Требования, предъявляемые к ОС 90-х годов 17
5.1.1. Расширяемость 17
5.1.2. Переносимость 18
5.1.3. Совместимость 19
5.1.4. Безопасность 19
6. Операционные системы различных фирм производителей программного обеспечения 21
6.1 Семейство операционных систем UNIX 21
6.2 Микроядро Mach 23
6.2.1. История Mach 24
6.2.2. Цели Mach 24
6.2.3. Основные концепции Mach 24
6.2.4. Сервер Mach BSD UNIX 25
6.3 Сетевые продукты фирмы Novell 26
6.3.1. История и версии сетевой ОС NetWare 26
6.3.2. Версия NetWare 4.1 27
6.4 Семейство сетевых ОС компании Microsoft 29
6.4.1. Сетевые продукты Microsoft 29
6.4.2. Windows NT 4.0 30
6.4.3. Области использования Windows NT 30
6.4.4. Концепции Windows NT 31
6.4.5. Совместимость Windows NT с NetWare 41
6.5 Операционная система OS/2 42
6.5.1. История развития OS/2 и ее место на рынке 42
6.5.2. Битва Microsoft - IBM на рынке настольных ОС 42
6.5.3. OS/2 - постепенные улучшения 43
7. Заключение 44
Список литературы 46

Работа содержит 1 файл

Операционная система .doc

— 464.00 Кб (Скачать)

Сетевая ОС имеет в своем составе средства передачи сообщений между компьютерами по линиям связи, которые совершенно не нужны в автономной ОС. На основе этих сообщений сетевая ОС поддерживает разделение ресурсов компьютера между удаленными пользователями, подключенными к сети. Для поддержания функций передачи сообщений сетевые ОС содержат специальные программные компоненты, реализующие популярные коммуникационные протоколы, такие как IP, IPX, Ethernet и другие.

Многопроцессорные системы требуют от операционной системы особой организации, с помощью  которой сама операционная система, а также поддерживаемые ею приложения могли бы выполняться параллельно отдельными процессорами системы. Параллельная работа отдельных частей ОС создает дополнительные проблемы для разработчиков ОС, так как в этом случае гораздо сложнее обеспечить согласованный доступ отдельных процессов к общим системным таблицам, исключить эффект гонок и прочие нежелательные последствия асинхронного выполнения работ.

Другие  требования предъявляются к операционным системам кластеров. Кластер - слабо связанная совокупность нескольких вычислительных систем, работающих совместно для выполнения общих приложений, и представляющихся пользователю единой системой. Наряду со специальной аппаратурой для функционирования кластерных систем необходима и программная поддержка со стороны операционной системы, которая сводится в основном к синхронизации доступа к разделяемым ресурсам, обнаружению отказов и динамической реконфигурации системы. Одной из первых разработок в области кластерных технологий были решения компании Digital Equipment на базе компьютеров VAX. Недавно этой компанией заключено соглашение с корпорацией Microsoft о разработке кластерной технологии, использующей Windows NT. Несколько компаний предлагают кластеры на основе UNIX-машин.

Наряду  с ОС, ориентированными на совершенно определенный тип аппаратной платформы, существуют операционные системы, специально разработанные таким образом, чтобы они могли быть легко перенесены с компьютера одного типа на компьютер другого типа, так называемые мобильные ОС. Наиболее ярким примером такой ОС является популярная система UNIX. В этих системах аппаратно-зависимые места тщательно локализованы, так что при переносе системы на новую платформу переписываются только они. Средством, облегчающем перенос остальной части ОС, является написание ее на машинно-независимом языке, например, на С, который и был разработан для программирования операционных систем.

2.3 Особенности  областей использования

Многозадачные ОС подразделяются на три типа в  соответствии с использованными при их разработке критериями эффективности:

системы пакетной обработки (например, OC EC),

системы разделения времени (UNIX, VMS),

системы реального времени (QNX, RT/11).

Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием эффективности систем пакетной обработки является максимальная пропускная способность, то есть решение максимального числа задач в единицу времени. Для достижения этой цели в системах пакетной обработки используются следующая схема функционирования: в начале работы формируется пакет заданий, каждое задание содержит требование к системным ресурсам; из этого пакета заданий формируется мультипрограммная смесь, то есть множество одновременно выполняемых задач. Для одновременного выполнения выбираются задачи, предъявляющие отличающиеся требования к ресурсам, так, чтобы обеспечивалась сбалансированная загрузка всех устройств вычислительной машины; так, например, в мультипрограммной смеси желательно одновременное присутствие вычислительных задач и задач с интенсивным вводом-выводом. Таким образом, выбор нового задания из пакета заданий зависит от внутренней ситуации, складывающейся в системе, то есть выбирается "выгодное" задание. Следовательно, в таких ОС невозможно гарантировать выполнение того или иного задания в течение определенного периода времени. В системах пакетной обработки переключение процессора с выполнения одной задачи на выполнение другой происходит только в случае, если активная задача сама отказывается от процессора, например, из-за необходимости выполнить операцию ввода-вывода. Поэтому одна задача может надолго занять процессор, что делает невозможным выполнение интерактивных задач. Таким образом, взаимодействие пользователя с вычислительной машиной, на которой установлена система пакетной обработки, сводится к тому, что он приносит задание, отдает его диспетчеру-оператору, а в конце дня после выполнения всего пакета заданий получает результат. Очевидно, что такой порядок снижает эффективность работы пользователя.

Системы разделения времени призваны исправить основной недостаток систем пакетной обработки - изоляцию пользователя-программиста от процесса выполнения его задач. Каждому пользователю системы разделения времени предоставляется терминал, с которого он может вести диалог со своей программой. Так как в системах разделения времени каждой задаче выделяется только квант процессорного времени, ни одна задача не занимает процессор надолго, и время ответа оказывается приемлемым. Если квант выбран достаточно небольшим, то у всех пользователей, одновременно работающих на одной и той же машине, складывается впечатление, что каждый из них единолично использует машину. Ясно, что системы разделения времени обладают меньшей пропускной способностью, чем системы пакетной обработки, так как на выполнение принимается каждая запущенная пользователем задача, а не та, которая "выгодна" системе, и, кроме того, имеются накладные расходы вычислительной мощности на более частое переключение процессора с задачи на задачу. Критерием эффективности систем разделения времени является не максимальная пропускная способность, а удобство и эффективность работы пользователя.

Системы реального времени применяются для управления различными техническими объектами, такими, например, как станок, спутник, научная экспериментальная установка или технологическими процессами, такими, как гальваническая линия, доменный процесс и т.п. Во всех этих случаях существует предельно допустимое время, в течение которого должна быть выполнена та или иная программа, управляющая объектом, в противном случае может произойти авария: спутник выйдет из зоны видимости, экспериментальные данные, поступающие с датчиков, будут потеряны, толщина гальванического покрытия не будет соответствовать норме. Таким образом, критерием эффективности для систем реального времени является их способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата (управляющего воздействия). Это время называется временем реакции системы, а соответствующее свойство системы - реактивностью. Для этих систем мультипрограммная смесь представляет собой фиксированный набор заранее разработанных программ, а выбор программы на выполнение осуществляется исходя из текущего состояния объекта или в соответствии с расписанием плановых работ.

Некоторые операционные системы могут совмещать  в себе свойства систем разных типов, например, часть задач может выполняться  в режиме пакетной обработки, а часть - в режиме реального времени или в режиме разделения времени. В таких случаях режим пакетной обработки часто называют фоновым режимом.

2.4 Особенности  методов построения

При описании операционной системы часто указываются  особенности ее структурной организации  и основные концепции, положенные в ее основу.

К таким  базовым концепциям относятся:

Способы построения ядра системы - монолитное ядро или микроядерный подход. Большинство  ОС использует монолитное ядро, которое  компонуется как одна программа, работающая в привилегированном режиме и использующая быстрые переходы с одной процедуры на другую, не требующие переключения из привилегированного режима в пользовательский и наоборот. Альтернативой является построение ОС на базе микроядра, работающего также в привилегированном режиме и выполняющего только минимум функций по управлению аппаратурой, в то время как функции ОС более высокого уровня выполняют специализированные компоненты ОС - серверы, работающие в пользовательском режиме. При таком построении ОС работает более медленно, так как часто выполняются переходы между привилегированным режимом и пользовательским, зато система получается более гибкой - ее функции можно наращивать, модифицировать или сужать, добавляя, модифицируя или исключая серверы пользовательского режима. Кроме того, серверы хорошо защищены друг от друга, как и любые пользовательские процессы.

Построение  ОС на базе объектно-ориентированного подхода дает возможность использовать все его достоинства, хорошо зарекомендовавшие  себя на уровне приложений, внутри операционной системы, а именно: аккумуляцию удачных решений в форме стандартных объектов, возможность создания новых объектов на базе имеющихся с помощью механизма наследования, хорошую защиту данных за счет их инкапсуляции во внутренние структуры объекта, что делает данные недоступными для несанкционированного использования извне, структуризованность системы, состоящей из набора хорошо определенных объектов.

Наличие нескольких прикладных сред дает возможность  в рамках одной ОС одновременно выполнять  приложения, разработанные для нескольких ОС. Многие современные операционные системы поддерживают одновременно прикладные среды MS-DOS, Windows, UNIX (POSIX), OS/2 или хотя бы некоторого подмножества из этого популярного набора. Концепция множественных прикладных сред наиболее просто реализуется в ОС на базе микроядра, над которым работают различные серверы, часть которых реализуют прикладную среду той или иной операционной системы.

Распределенная  организация операционной системы  позволяет упростить работу пользователей и программистов в сетевых средах. В распределенной ОС реализованы механизмы, которые дают возможность пользователю представлять и воспринимать сеть в виде традиционного однопроцессорного компьютера. Характерными признаками распределенной организации ОС являются: наличие единой справочной службы разделяемых ресурсов, единой службы времени, использование механизма вызова удаленных процедур (RPC) для прозрачного распределения программных процедур по машинам, многонитевой обработки, позволяющей распараллеливать вычисления в рамках одной задачи и выполнять эту задачу сразу на нескольких компьютерах сети, а также наличие других распределенных служб.

3. Сетевые  операционные системы

3.1 Структура  сетевой операционной системы

Сетевая операционная система составляет основу любой вычислительной сети. Каждый компьютер в сети в значительной степени автономен, поэтому под сетевой операционной системой в широком смысле понимается совокупность операционных систем отдельных компьютеров, взаимодействующих с целью обмена сообщениями и разделения ресурсов по единым правилам - протоколам. В узком смысле сетевая ОС - это операционная система отдельного компьютера, обеспечивающая ему возможность работать в сети.

Рис. 1.1. Структура сетевой ОС

В сетевой  операционной системе отдельной машины можно выделить несколько частей (рисунок 1.1):

Средства  управления локальными ресурсами компьютера: функции распределения оперативной  памяти между процессами, планирования и диспетчеризации процессов, управления процессорами в мультипроцессорных машинах, управления периферийными устройствами и другие функции управления ресурсами локальных ОС.

Средства  предоставления собственных ресурсов и услуг в общее пользование - серверная часть ОС (сервер). Эти  средства обеспечивают, например, блокировку файлов и записей, что необходимо для их совместного использования; ведение справочников имен сетевых ресурсов; обработку запросов удаленного доступа к собственной файловой системе и базе данных; управление очередями запросов удаленных пользователей к своим периферийным устройствам.

Средства  запроса доступа к удаленным  ресурсам и услугам и их использования - клиентская часть ОС (редиректор). Эта часть выполняет распознавание  и перенаправление в сеть запросов к удаленным ресурсам от приложений и пользователей, при этом запрос поступает от приложения в локальной форме, а передается в сеть в другой форме, соответствующей требованиям сервера. Клиентская часть также осуществляет прием ответов от серверов и преобразование их в локальный формат, так что для приложения выполнение локальных и удаленных запросов неразличимо.

Коммуникационные  средства ОС, с помощью которых  происходит обмен сообщениями в  сети. Эта часть обеспечивает адресацию  и буферизацию сообщений, выбор  маршрута передачи сообщения по сети, надежность передачи и т.п., то есть является средством транспортировки сообщений.

В зависимости  от функций, возлагаемых на конкретный компьютер, в его операционной системе  может отсутствовать либо клиентская, либо серверная части.

На  рисунке 1.2 показано взаимодействие сетевых компонентов. Здесь компьютер 1 выполняет роль "чистого" клиента, а компьютер 2 - роль "чистого" сервера, соответственно на первой машине отсутствует серверная часть, а на второй - клиентская. На рисунке отдельно показан компонент клиентской части - редиректор. Именно редиректор перехватывает все запросы, поступающие от приложений, и анализирует их. Если выдан запрос к ресурсу данного компьютера, то он переадресовывается соответствующей подсистеме локальной ОС, если же это запрос к удаленному ресурсу, то он переправляется в сеть. При этом клиентская часть преобразует запрос из локальной формы в сетевой формат и передает его транспортной подсистеме, которая отвечает за доставку сообщений указанному серверу. Серверная часть операционной системы компьютера 2 принимает запрос, преобразует его и передает для выполнения своей локальной ОС. После того, как результат получен, сервер обращается к транспортной подсистеме и направляет ответ клиенту, выдавшему запрос. Клиентская часть преобразует результат в соответствующий формат и адресует его тому приложению, которое выдало запрос.

Рис. 1.2. взаимодействие компонентов  операционной системы при взаимодействии компьютеров

Информация о работе Операционная система