Автор: Пользователь скрыл имя, 04 Ноября 2012 в 10:08, контрольная работа
Обычные сделки основаны на физических аспектах. В супермаркетах клиенты охотнее используют свои кредитные карты, так как они сами могут рассмотреть и пощупать товар и, таким образом, судить о магазине. В связи с отсутствием этих аспектов в Интернете, в нём гораздо труднее обеспечить безопасность нашего предприятия
Обычные сделки
основаны на физических
2. Безопасность электронных платежей.
Рассмотрим особенности подхода к защите электронных банковских систем. Специфической чертой этих систем является специальная форма обмена электронными данными - электронных платежей, без которых ни один современный банк не может существовать.
Обмен электронными данными (ОЭД) — это межкомпьютерный обмен деловыми, коммерческими, финансовыми электронными документами. Например, заказами, платежными инструкциями, контрактными предложениями, накладными, квитанциями и т.п.
ОЭД обеспечивает оперативное взаимодействие торговых партнеров (клиентов, поставщиков,торговых посредников и др.) на всех этапах подготовки торговой сделки, заключения контракта и реализации поставки. На этапе оплаты контракта и перевода денежных средств ОЭД может приводить к электронному обмену финансовыми документами. При этом создается эффективная среда для торгово-платежных операций:
* Возможно ознакомление торговых партнеров с предложениями товаров и услуг, выбор необходимого товара/услуги, уточнение коммерческих условий (стоимости и сроков поставки, торговых скидок, гарантийных и сервисных обязательств) в реальном масштабе времени;
* Заказ товара/услуг или запрос контрактного предложения в реальном масштабе времени;
* Оперативный контроль
поставки товара, получение по
электронной почте
* Подтверждение завершения
* Выполнение банковских
* Уменьшение стоимости операций
за счет перехода на
* Повышение скорости расчета и оборота денег;
* Повышение удобства расчетов.
Существует две ключевые стратегии развития ОЭД:
1. ОЭД используется
как преимущество в
2. ОЭД используется
в некоторых специфических
Банки в США и Западной Европе уже осознали свою ключевую роль в распространении ОЭД и поняли те значительные преимущества, которые дает более тесное взаимодействие с деловыми и личными партнерами. ОЭД помогает банкам в предоставлении услуг клиентам, особенно мелким, тем, которые ранее не могли позволить себе ими воспользоваться из-за их высокой стоимости.
Частным случаем ОЭД
являются электронные платежи - обмен
финансовыми документами между
клиентами и банками, между банками
и другими финансовыми и коммер
Суть концепции электронных платежей заключается в том, что пересылаемые по линиям связи сообщения, должным образом оформленные и переданные, являются основанием для выполнения одной или нескольких банковских операций. Никаких бумажных документов для выполнения этих операций в принципе не требуется (хотя они могут быть выданы). Другими словами, пересылаемое по линиям связи сообщение несет информацию о том, что отправитель выполнил некоторые операции над своим счетом, в частности над корреспондентским счетом банка-получателя (в роли которого может выступать клиринговый центр), и что получатель должен выполнить определенные в сообщении операции. На основании такого сообщения можно переслать или получить деньги, открыть кредит, оплатить покупку или услугу и выполнить любую другую банковскую операцию. Такие сообщения называются электронными деньгами, а выполнение банковских операций на основании посылки или получения таких сообщений - электронными платежами. Естественно, весь процесс осуществления электронных платежей нуждается в надежной защите. Иначе банк и его клиентов ожидают серьезные неприятности.
Методы обеспечения безопасности в сети Интернет
Одним из важнейших условий широкого применения Интернета было и остается обеспечение адекватного уровня безопасности для всех транзакций, проводимых через него. Это касается информации, передаваемой между пользователями, информации сохраняемой в базах данных торговых систем, информации, сопровождающей финансовые транзакции.
Понятие безопасность информации можно определить как состояние устойчивости информации к случайным или преднамеренным воздействиям, исключающее недопустимые риски ее уничтожения, искажения и раскрытия, которые приводят к материальному ущербу владельца или пользователя информации. Поскольку Сеть полностью открыта для внешнего доступа, то роль этих методов очень велика. Большая значимость фактора безопасности также отмечается многочисленными исследованиями, проводимыми в Интернете.
Решить проблемы безопасности призвана криптография — наука об обеспечении безопасности данных. Криптография и построенные на ее основе системы призваны решать следующие задачи.
· Конфиденциальность. Информация должна быть защищена от несанкционированного доступа как при хранении, так и при передаче. Доступ к информации может получить только тот, для кого она предназначена. Обеспечивается шифрованием.
· Аутентификация. Необходимо однозначно идентифицировать отправителя, при однозначной идентификации отправитель не может отказаться от послания. Обеспечивается электронной цифровой подписью и сертификатом.
· Целостность. Информация должна быть защищена от несанкционированного изменения как при хранении, так и при передаче. Обеспечивается электронной цифровой подписью.
В соответствии с названными задачами основными методами обеспечения безопасности выступают шифрование, цифровая подпись и сертификаты.
3. Методы Шифрования
Осуществляя сделки в Сети, в первую очередь необходимо убедиться, что важная информация надежно скрыта от посторонних лиц. Этому служат технологии шифрования, преобразующие простой текст в форму, которую невозможно прочитать, не обладая специальным шифровальным ключом. Благодаря данным технологиям можно организовать безопасную связь по общедоступным незащищенным каналам Интернета.
Любая система шифрования работает по определенной методологии, включая в себя один или более алгоритмов шифрования (математических формул), ключи, используемые этими алгоритмами, а также систему управления ключами.
Согласно методологии шифрования сначала к тексту применяются алгоритм шифрования и ключ для получения из него шифрованного текста. Затем шифрованный текст передается к месту назначения, где тот же самый алгоритм и ключ используются для его расшифровки, чтобы получить первоначальный текст. В методологию шифрования также входят процедуры создания ключей и их распространения.
Наиболее распространены алгоритмы шифрования, которые объединяют ключ с текстом. Безопасность систем такого типа зависит от конфиденциальности ключа, используемого в алгоритме шифрования, а не от конфиденциальности самого алгоритма, который может быть общедоступен и благодаря этому хорошо проверен. Но основная проблема, связанная с этими методами, состоит в безопасной процедуре генерации и передачи ключей участникам взаимодействия.
В настоящее время существует два основных типа криптографических алгоритмов:
1. классические, или симметричные алгоритмы, основанные на использовании закрытых, секретных ключей, когда и шифрование, и дешифрирование производятся с помощью одного и того же ключа;
2. алгоритмы с открытым ключом, в которых используются один открытый и один закрытый ключ, то есть операции шифрования производятся с помощью разных ключей. Эти алгоритмы называются также асимметричными.
Каждая методология требует собственных способов распределения ключей и собственных типов ключей, а также алгоритмов шифрования и расшифровки ключей.
Симметричные методы шифрования
Технология шифрования с секретным ключом (симметричный алгоритм) требует, чтобы оба участника зашифрованной переписки имели доступ к одному и тому же ключу. Это необходимо, так как отправитель использует ключ для зашифровки сообщения, а получатель применяет его же для расшифровки. Как следствие, возникает проблема безопасной передачи этого ключа.
Алгоритмы симметричного шифрования используют ключи не очень большой длины и могут быстро шифровать большие объемы данных.
Порядок использования систем с симметричными ключами выглядит следующим образом:
1. Безопасно создается,
распространяется и
2. Отправитель использует
симметричный алгоритм
3. Отправитель передает
зашифрованный текст.
4. Для восстановления исходного текста, получатель применяет к зашифрованному тексту тот же самый симметричный алгоритм шифрования вместе с тем же самым симметричным ключом, который уже есть у него.
Асимметричные методы шифрования
Для решения проблемы распространения ключей при использовании симметричных методов шифрования на основе результатов, полученных классической и современной алгеброй, были предложены системы с открытым ключом, или асимметричные криптосистемы. Суть их состоит в том, что каждым адресатом генерируются два ключа, связанные между собой по определенному правилу. Хотя каждый из пары ключей подходит как для шифрования, так и для дешифрирования, данные, зашифрованные одним ключом, могут быть расшифрованы только другим.
Один ключ объявляется открытым, а другой закрытым. Открытый ключ публикуется и доступен любому, кто желает послать сообщение адресату. Секретный ключ сохраняется в тайне. Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст не может быть расшифрован тем же открытым ключом. Дешифрирование сообщения возможно только с использованием закрытого ключа, известного лишь самому адресату.
Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции.
Понятие односторонней
функции было введено в теоретическом исслед
Множество классов необратимых
функций порождает все
Алгоритмы шифрования с открытым ключом получили широкое распространение в современных информационных системах. Известно несколько криптосистем с открытым ключом. Наиболее разработана на сегодня система RSA, предложенная еще в 1978 г. Алгоритм RSA назван по первым буквам фамилий его авторов: Р. Л. Райвеста (R. L. Rivest), А. Шамира (A. Shamir) и Л. Адлемана (L. Adieman). Этот алгоритм стал мировым фактически признанным стандартом для открытых систем и рекомендован МККТТ (Международный Консультативный Комитет по телефонии и телеграфии). Также используются алгоритмы: ECC (криптосистема на основе эллиптических кривых), Эль-Гамаль.
Следует отметить, что алгоритмы систем шифрования с открытым ключом можно использовать в качестве следующих инструментов:
· как самостоятельные средства защиты передаваемых и хранимых данных;
· как средства для распределения ключей (алгоритмы систем шифрования с открытым ключом более трудоемки, чем традиционные криптосистемы, поэтому на практике часто бывает рационально передать ключи, объем информации в которых незначителен с их помощью, а потом с помощью обычных алгоритмов осуществлять обмен большими информационными потоками);
· как средства аутентификации пользователей (для создания электронной цифровой подписи).
Все асимметричные криптосистемы
являются объектом атак, в которых
применяется прямой перебор ключей,
поэтому для обеспечения
Информация о работе Обеспечение безопасности электронных сделок и электронных платежей