Микропроцессоры

Автор: Ольга Зубина, 09 Октября 2010 в 15:57, реферат

Описание работы

Процессор (или центральный процессор, ЦП) — это транзисторная микросхема, которая является главным вычислительным и управляющим элементом компьютера.
Английское название процессора - CPU (Central Processing Unit).
Процессор представляет собой специально выращенный полупроводниковый кристалл, на котором располагаются транзисторы, соединенные напыленными алюминиевыми проводниками. Кристалл помещается в керамический корпус с контактами.
В первом процессоре компании Intel - i4004, выпущенном в 1971 году, на одном кристалле было 2300 транзисторов, а в процессоре Intel Pentium 4, выпущенном 14 апреля 2003 года, их уже 55 миллионов.
Современные процессоры изготавливаются по 0,13-микронной технологии, т.е. толщина кристалла процессора составляет 0,13 микрон. Для сравнения - толщина кристалла первого процессора Intel была 10 микрон.
В нашей работе мы ставим целью рассмотреть назначение, основные функции процессора, его основные особенности, а также описать структуру и функционирование микропроцессоров.

Содержание

ВВЕДЕНИЕ 3
1 НАЗНАЧЕНИЕ И ОСНОВНЫЕ ФУНКЦИИ ПРОЦЕССОРА 4
2 ТИПЫ ПРОЦЕССОРОВ 11
3 СОПРОЦЕССОРЫ 15
4 СТРУКТУРА МИКРОПРОЦЕССОРА 17
4.1 Устройство управления 18
4.2 Микропроцессорная память 21
4.3 Интерфейсная часть микропроцессора 21
ЗАКЛЮЧЕНИЕ 24
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 25

Работа содержит 1 файл

ИНФОРМАТИКА микропроцессоры.doc

— 227.50 Кб (Скачать)

СОДЕРЖАНИЕ 

 

    ВВЕДЕНИЕ

 
 

      Процессор (или центральный процессор, ЦП) — это транзисторная микросхема, которая является главным вычислительным и управляющим элементом компьютера.

      Английское  название процессора - CPU (Central Processing Unit).

      Процессор представляет собой специально выращенный полупроводниковый кристалл, на котором располагаются транзисторы, соединенные напыленными алюминиевыми проводниками. Кристалл помещается в керамический корпус с контактами.

      В первом процессоре компании Intel - i4004, выпущенном в 1971 году, на одном кристалле было 2300 транзисторов, а в процессоре Intel Pentium 4, выпущенном 14 апреля 2003 года, их уже 55 миллионов.

      Современные процессоры изготавливаются по 0,13-микронной  технологии, т.е. толщина кристалла процессора составляет 0,13 микрон. Для сравнения - толщина кристалла первого процессора Intel была 10 микрон.

      В нашей работе мы ставим целью рассмотреть  назначение, основные функции процессора, его основные особенности, а также описать структуру и функционирование микропроцессоров.

 

1 НАЗНАЧЕНИЕ И ОСНОВНЫЕ ФУНКЦИИ ПРОЦЕССОРА

 
 

      Центральный процессор (ЦП; англ. central processing unit, CPU, дословно - центральное вычислительное устройство) - исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающий за выполнение операций, заданных программами.

      Современные ЦП, выполняемые в виде отдельных микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших интегральных схем (СБИС).

      Изначально  термин «Центральное процессорное устройство» описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

      Ранние  ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры, и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

      Большинство современных процессоров для  персональных компьютеров, в общем, основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом.

      Д. фон Нейман придумал схему постройки  компьютера в 1946 году [6, c. 115]. Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

      Этапы цикла выполнения:

  1. Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения;
  2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;
  3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;
  4. Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;
  5. Снова выполняется п. 1.

      Данный  цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

      Во  время процесса процессор считывает  последовательность команд, содержащихся в памяти, и исполняет их. Такая  последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода — тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки прерывания.

      Команды центрального процессора являются самым  нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

      Скорость  перехода от одного этапа цикла к  другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.

      Рассмотрит  конвейерную архитектуру процессора. Конвейерная архитектура (pipelining) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды из ОЗУ, дешифрация команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера. Например, конвейер микропроцессора с архитектурой MIPS-I содержит четыре стадии:

  • получение и декодирование инструкции (Fetch)
  • адресация и выборка операнда из ОЗУ (Memory access)
  • выполнение арифметических операций (Arithmetic Operation)
  • сохранение результата операции (Store)

      После освобождения k-й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной в n ступеней займёт n единиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.

      Действительно, при отсутствии конвейера выполнение команды займёт n единиц времени (так как для выполнения команды по прежнему необходимо выполнять выборку, дешифрацию и т. д.), и для исполнения m команд понадобится единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполнения m команд понадобится всего лишь n + m единиц времени.

      Факторы, снижающие эффективность конвейера:

  1. простой конвейера, когда некоторые ступени не используются (напр., адресация и выборка операнда из ОЗУ не нужны, если команда работает с регистрами);
  2. ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд, out-of-order execution);
  3. очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).

      Некоторые современные процессоры имеют более 30 ступеней в конвейере, что увеличивает производительность процессора, однако приводит к большому времени простоя (например, в случае ошибки в предсказании условного перехода.)

      Первым  общедоступным микропроцессором был 4-разрядный Intel 4004. Его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Но из-за распространённости 8-разрядных модулей памяти был выпущен 8088, клон 8086 с 8-разрядной шиной памяти. Затем проследовала его модификация 80186. В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти. Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

      Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

      Рассмотрим  технологию изготовления процессоров.

      В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см) вставляющегося в ZIF-сокет. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов. В первых компьютерах процессоры были громоздкими агрегатами, занимавшими подчас целые шкафы и даже комнаты, и были выполнены на большом количестве отдельных компонентов.

      В начале 1970-х годов благодаря прорыву  в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микросхем, стало возможным разместить все необходимые компоненты ЦП в одном полупроводниковом устройстве. Появились так называемые микропроцессоры. Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали еще, по крайней мере, 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Надо сказать, что переход к микропроцессорам позволил потом создать персональные компьютеры, которые теперь проникли почти в каждый дом [1, c. 88].

Информация о работе Микропроцессоры