Компьютерная память

Автор: Пользователь скрыл имя, 13 Марта 2012 в 15:51, доклад

Описание работы

Компью́терная па́мять (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных, используемых в вычислениях, в течение определённого времени. Память, как и центральный процессор, является неизменной частью компьютера с 1940-х. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики.

Работа содержит 1 файл

Компью́терная па́мять.docx

— 79.43 Кб (Скачать)

Компью́терная па́мять (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных, используемых в вычислениях, в течение определённого времени. Память, как и центральный процессор, является неизменной частью компьютера с 1940-х. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики.

В персональных компьютерах  «памятью» часто называют один из её видов — динамическая память с произвольным доступом (DRAM), — которая в настоящее время используется в качестве ОЗУ персонального компьютера.

Задачей компьютерной памяти является хранение в своих ячейках состояния внешнего воздействия, запись информации. Эти ячейки могут фиксировать самые разнообразные физические воздействия (см. ниже). Они функционально аналогичны обычному электромеханическому переключателю и информация в них записывается в виде двух чётко различимых состояний — 0 и 1 («выключено»/«включено»). Специальные механизмы обеспечивают доступ (считывание, произвольное или последовательное) к состоянию этих ячеек.

Процесс доступа  к памяти разбит на разделённые во времени процессы — операцию записи (сленг. прошивка, в случае записи ПЗУ) и операцию чтения, во многих случаях эти операции происходят под управлением отдельного специализированного устройства — контроллера памяти.

Также различают  операцию стирания памяти — занесение (запись) в ячейки памяти одинаковых значений, обычно 0016 или FF16.

Наиболее известные запоминающие устройства, используемые в персональных компьютерах: модули оперативной памяти (ОЗУ), жёсткие диски (винчестеры), дискеты (гибкие магнитные диски), CD- или DVD-диски, а также устройства флеш-памяти

Организация хранения данных и алгоритмы доступа к  ним

Повторяет классификацию структур данных:

  • Адресуемая память — адресация осуществляется по местоположению данных.
  • Ассоциативная память (англ. associative memory, content-addressable memory, CAM) — адресация осуществляется по содержанию данных, а не по их местоположению.
  • Магазинная (стековая) память (англ. pushdown storage) — реализация стека.
  • Матричная память (англ. matrix storage) — ячейки памяти расположены так, что доступ к ним осуществляется по двум или более координатам.
  • Объектная память (англ. object storage) — память, система управления которой ориентирована на хранение объектов. При этом каждый объект характеризуется типом и размером записи.
  • Семантическая память (англ. semantic storage) — данные размещаются и списываются в соответствии с некоторой структурой понятийных признаков

Внешние хранители информации:

Жесткий магнитный диск (винчестер, HDD – Hard Disk Drive) – постоянная память, предназначена для долговременного хранения всей имеющейся в компьютере информации. Операционная система, постоянно используемые программы загружаются с жесткого диска, на нем хранится большинство документов.

Накопитель  на жестком диске (HDD) является одним  из ключевых компонентов современного ПК. От него напрямую зависит производительность и надежность системы. Технологии изготовления жестких дисков совершенствуются, размеры  программ увеличиваются, данные на компьютере накапливаются...

Устройство  жестких дисков (рис.1).

Рис. 1. Устройство жесткого магнитного диска

Жесткий магнитный диск (он же винчестер) состоит из гермоблока и платы электроники. В гермоблоке размещены все механические части, на плате – вся управляющая электроника, за исключением предусилителя (предварительного усилителя), размещенного внутри гермоблока в непосредственной близости от считывающих головок.

В гермоблоке установлен шпиндель с одним или несколькими дисками. Диски изготовлены из алюминия (иногда – из керамики или стекла) и покрыты тонким слоем окиси хрома. В настоящее время объем информации, хранимой на одном диске, может достигать 100 Гбайт.

Сбоку шпинделя находится  поворотный позиционер (подобен башенному крану со стрелой-коромыслом). С одной стороны коромысла расположены обращенные к дискам легкие магнитные головки, а с другой – короткий хвостовик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией дисков.

Под дисками расположен двигатель, который вращает их с большой  скоростью. При вращении дисков создается  сильный поток воздуха, который  циркулирует по периметру гермоблока. Пыль губительна для поверхности дисков, поэтому блок герметизирован, воздух в нем постоянно очищается специальным фильтром. Для выравнивания давления воздуха внутри и снаружи в крышках гермоблоков делаются небольшие окна, заклеенные тонкой пленкой. В ряде моделей окно закрывается воздухопроницаемым фильтром.

Обмотку позиционера окружает статор, представляющий собой постоянный магнит. При подаче в обмотку тока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением. Динамически изменяя ток в обмотке, можно устанавливать позиционер в любое положение.

При вращении дисков аэродинамическая сила поддерживает головки на небольшом  расстоянии от поверхности дисков. Головки никогда не соприкасаются  с той зоной поверхности диска, где записаны данные. На хвостовике позиционера обычно расположена так называемая магнитная защелка – маленький постоянный магнит, который при крайнем внутреннем положении головок притягивается к поверхности статора и фиксирует коромысло в этом положении. Это так называемое парковочное положение головок, которые при этом лежат на поверхности диска, соприкасаясь с нею. В посадочной зоне дисков информация не записывается, поэтому прямой контакт с нею не опасен.

Практически все современные  жесткие диски выпускаются по технологии, использующей магниторезистивный эффект. Благодаря этому в последний  год емкость дисков растет быстрыми темпами за счет повышения плотности  записи информации.

Появление в 1999 г. изобретенных фирмой IBM головок с магниторезистивным эффектом (GMR – Giant Magnetic Resistance) привело к повышению плотности записи до 6,4 Гбайт на одну пластину в уже представленных на рынке изделиях.

Основные параметры жесткого диска:

  • Емкость – винчестер имеет объем от 40 Гб до 200 Гб.
  • Скорость чтения данных. Средний сегодняшний показатель – около 8 Мбайт/с.
  • Среднее время доступа. Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель – 9 мс.
  • Скорость вращения диска. Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов.
  • Размер кэш-памяти – быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У винчестера есть своя кэш-память размером до 8 Мбайт.
  • Фирма-производитель. Освоить современные технологии могут только крупнейшие производители, потому что организация изготовления сложнейших головок, пластин, контроллеров требует крупных финансовых и интеллектуальных затрат. В настоящее время жесткие диски производят семь компаний: Fujitsu, IBM-Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие особенности.
  • Компактные твердотельные носители
  • Проблема емких и надежных накопителей, являющихся внешними для компьютерной системы, стоит сегодня достаточно остро.
  • 2.2.1. Стримеры
  • Классическим способом резервного копирования является применение стримеров – устройств записи на магнитную ленту. Однако возможности этой технологии, как по емкости, так и по скорости, сильно ограничены физическими свойствами носителя. Стример по принципу действия очень похож на кассетный магнитофон. Данные записываются на магнитную ленту, протягиваемую мимо головок. Недостатком стримера является слишком большое время последовательного доступа к данным при чтении. Емкость стримера достигает нескольких Гбайт, что меньше емкости современных винчестеров, а время доступа во много раз больше.

Гибкие диски

Использование 3,5' (1,44 Мбайт) гибких дисков уходит в прошлое. Бывают двух типов и обеспечивают хранение информации на дискетах одного из двух форматов: 5,25' или 3,5'. Дискеты формата 5,25' в настоящее время практически не встречаются (максимальная емкость 1,2 Мб). Для дискет формата 3,5' максимальная емкость составляет 2,88 Мб, самый распространенный формат емкости для них – 1,44 Мб. Гибкие магнитные диски помещаются в пластмассовый корпус. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращается с постоянной угловой скоростью.

Все дискеты перед употреблением  форматируются – на них наносится  служебная информация, обе поверхности  дискеты разбиваются на концентрические  окружности – дорожки, которые в  свою очередь делятся на сектора. Одноименные сектора обеих поверхностей образуют кластеры. Магнитные головки  примыкают к обеим поверхностям и при вращении диска проходят мимо всех кластеров дорожки. Перемещение  головок по радиусу с помощью  шагового двигателя обеспечивает доступ к каждой дорожке. Запись/чтение осуществляется целым числом кластеров, обычно под  управлением операционной системы. Однако в особых случаях можно организовать запись/чтение и в обход операционной системы, используя напрямую функции BIOS. В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие воздействия могут привести к размагничиванию носителя и потере информации.

CD-ROM и CD-RW

Вторым  по степени распространенности накопителем  можно назвать дисководы CD-ROM и CD-RW (Compact Disc-ReWritable).

В качестве носителя программ и данных диски CD-ROM останутся актуальными  и в обозримом будущем, поэтому, несмотря на появление записывающих устройств, продолжается совершенствование  и классических (только с функцией чтения) приводов CD-ROM – они становятся все более быстродействующими и  дешёвыми. Устройства с однократной (CD-R) и многократной (CD-RW) записью, хотя и получают все большее распространение, пока не вытесняют, а скорее дополняют  обычные проводы CD-ROM.

На  диске CD-ROM промышленным способом записывается информация, и произвести ее повторную  запись невозможно. Наибольшее распространение  получили 5-дюймовые диски CD-ROM емкостью 670 Мбайт. По своим характеристикам  они полностью идентичны обычным  музыкальным компакт-дискам. Данные на диске записываются в виде спирали (в отличие от винчестера, данные на котором располагаются в виде концентрических окружностей). С  точки зрения физики лазерный луч  определяет цифровую последовательность единиц и нулей, записанных на CD, no форме микроскопических ямок (пит, pit) на его спирали.

Лазерные накопители CD-R

Цены  на средства записи компакт-дисков снизились, а это значит, что теперь даже частное лицо может попытаться выпустить  небольшим тиражом свой диск.

Чтобы записать один-единственный компакт-диск, десять лет назад потребовались  бы целая комната аппаратуры, два  квалифицированных специалиста  и восемь часов работы. Сегодня, имея компьютер с записывающим дисководом CD-R, можно сделать диск менее чем  за час. Аббревиатурой CD-R (CD-Recordable) обозначена технология однократной оптической записи, которую можно использовать для архивирования данных, создания прототипов дисков для серийного производства и для мелкосерийного выпуска изданий на компакт-дисках, записи аудио и видео. На CD-R, в частности, основана система Photo CD фирмы Kodak.

CD-RW - накопители на перезаписываемых CD-дисках

Более десяти лет назад на компьютерном рынке появились накопители, которые  дают возможность работать с перезаписываемыми CD-RW (CD-ReWritable), известными также как CDE . Такие устройства позволяют заносить информацию на существующие недорогие компакт-диски с возможностью дозаписи (CD-R ценой около 0,3 $), а при использовании перезаписываемых CD-RW-дисков могут стирать старые данные и записывать вместо них новые. Емкость носителя CD-RW (стоимость около .6 $) составляют 650 Мбайт и равна емкости дисков CD-ROM и CD-R.

CD-RW-привод  автоматически распознает тип  загружаемого носителя. CD-R-диски  совместимы с более чем 600 млн.  различных CD-ROM-носителей и плейеров  звуковых компакт-дисков, существующих  сегодня в мире; они могут работать  и в некоторых DVD-ROM-приводах (не  во всех).

Диски CD-RW считываются только на современных  универсальных CD-ROM-устройствах и DVD-ROM, рассчитанных на работу с различными носителями (удовлетворяющих спецификации MultiRead). С помощью специальных программ на чистый CD возможна одноразовая запись информации в домашних условиях. Запись производится мощным лазером, под воздействием которого материал CD частично теряет прозрачность. По внешнему виду как сами дисководы, так и диски для CD-RW практически не отличаются от CD-ROM, DVD-ROM. Однако из-за меньшей прозрачности CD требуют лучшего отражающего покрытия. В целях сохранения информации CD необходимо предохранять от механических повреждений (царапин, сколов), а также от загрязнения. Накопители управляются контроллерами, размещенными на системной плате либо на мультикарте.

Накопители DVD-ROM, DVD-R, DVD-RW, DVD+RW и др.

В конце 1997-го - начале 1998 года на рынке  стали появляться диски и приводы DVD. Этот стандарт был создан с расчетом на то, чтобы заменить разные носители сразу в нескольких областях –  в индустрии видео, в сфере  информационных технологий, в звуковых записях и даже, возможно в индустрии  игровых картриджей. По замыслу разработчиков, это должен быть некий “универсальный”  носитель, необычайно вместительный  и надежный.

Информация о работе Компьютерная память