История ЭВМ

Автор: Пользователь скрыл имя, 11 Декабря 2011 в 21:43, контрольная работа

Описание работы

История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось простейшее счетное устройство - абак. В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты. В 1642 году Блез Паскаль сконструировал восьмиразрядный суммирующий механизм. Два столетия спустя в 1820 году француз Шарль де Кольмар создал арифмометр, способный производить умножение и деление. Этот прибор прочно занял свое место на бухгалтерских столах.

Работа содержит 1 файл

История развития ЭВМ.doc

— 81.00 Кб (Скачать)

§1 Рождение ЭВМ 

    История  компьютера тесным образом связана  с попытками облегчить и автоматизировать  большие объемы вычислений. Даже  простые арифметические операции  с большими числами затруднительны  для человеческого мозга. Поэтому  уже в древности появилось простейшее счетное устройство - абак. В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты. В 1642 году Блез Паскаль сконструировал восьмиразрядный суммирующий механизм. Два столетия спустя в 1820 году француз Шарль де Кольмар создал арифмометр, способный производить умножение и деление. Этот прибор прочно занял свое место на бухгалтерских столах.

    Все  основные идеи, которые лежат  в основе работы компьютеров,  были изложены еще в 1833 году  английским математиком Чарльзом Бэббиджем. Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера, а также его задачи. Управление такой машиной должно было осуществляться программным путем. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты - листы из плотной бумаги с информацией, наносимой с помощью отверстий. В то время перфокарты уже использовались в текстильной промышленности. Отверстия в них пробивались с помощью специальных устройств - перфораторов. Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века.

   В 1888 году  американский инженер Герман  Холлерит сконструировал первую  электромеханическую счетную машину. Эта машина, названная табулятором,  могла считывать и сортировать статистические записи, закодированные на перфокартах. В 1890 году изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую пятьсот сотрудников выполняли в течение семи лет, Холлерит сделал с 43 помощниками на 43 табуляторах за один месяц.

    В  1896 году Герман Холлерит основал  фирму Computing Tabulating Recording Company, которая  стала основой для будущей  Интернэшнл Бизнес Мэшинс (International Business Machines Corporation, IBM) - компании, внесшей гигантский вклад в развитие мировой компьютерной техники.

    Дальнейшие  развития науки и техники позволили  в 1940-х годах построить первые  вычислительные машины. Создателем  первого действующего компьютера Z1 с программным управлением считают  немецкого инженера Конрада Цузе.

    В  феврале 1944 года на одном из  предприятий Ай-Би-Эм (IBM) в сотрудничестве  с учеными Гарвардского университета  по заказу ВМС США была создана  машина "Mark 1". Это был монстр  весом около 35 тонн. В "Mark 1" использовались механические элементы для представления чисел и электромеханические - для управления работой машины. Числа хранились в регистрах, состоящих из десятизубных счетных колес. Каждый регистр содержал 24 колеса, причем 23 из них использовались для представления числа (т.е. "Mark 1" мог "перемалывать" числа длинной до 23 разрядов), а одно - для представления его знака. Регистр имел механизм передачи десятков и поэтому использовался не только для хранения чисел; находящееся в одном регистре, число могло быть передано в другой регистр и добавлено к находящемуся там числу(или вычтено из него). Всего в "Mark 1" было 72 регистра и, кроме того, дополнительная память из 60 регистров, образованных механическими переключателями. В эту дополнительную память вручную вводились константы - числа, которые не изменялись в процессе вычислений.

    Умножение  и деление производилось в  отдельном устройстве. Кроме того, машина имела встроенные блоки,  для вычисления sin x, 10x и log x.

    Скорость  выполнения арифметических операций  в среднем составляла: сложение и вычитание - 0,3 секунды, умножение - 5,7 секунды, деление - 15,3 секунды. Таким образом "Mark 1" был "эквивалентен" примерно 20 операторам, работающим с ручными счетными машинами.

Наконец, в 1946 в  США была создана первая электронная вычислительная машина (ЭВМ) - ENIAC (Electronic Numerical integrator and Computer - Электронный числовой интегратор и компьютер). Разработчики: Джон Мочи (John Маuchу) и Дж. Преспер Эккерт (J. Prosper Eckert).

    Он  был произведен на свет в  Школе электрической техники Moore (при университете в Пенсильвании).

    Время  сложения - 200 мкс, умножения - 2800 мкс  и деления - 24000 мкс. 

    Компьютер  содержал 17468 вакуумных ламп шестнадцати  типов, 7200 кристаллических диодов  и 4100 магнитных элементов.

    Общая стоимость базовой машины - 750000 долларов. Стоимость включала дополнительное оборудование, магнитные модули памяти (по цене 29706,5 доллара) и аренду у IBM (по 82,5 доллара в месяц) устройства считывания перфокарт ( 125 карт в минуту). Она также включала и арендную плату (по 77 долларов в месяц) за IBM-перфоратор (100 карт в минуту).

    Потребляемая  мощность ENIAC - 174 кВт. Занимаемое  пространство - около 300 кв. м. 

    В  Советском Союзе первая электронная  цифровая вычислительная машина  была разработана в 1950 году под руководством академика С. А. Лебедева в Академии наук Украинской ССР. Она называлась «МЭСМ» (малая электронная счётная машина).

    Основоположниками  компьютерной науки по праву  считаются Клод Шеннон - создатель  теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика, наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер. Одно время слово "кибернетика" использовалось для обозначения вообще всей компьютерной науки, а в особенности тех ее направлений, которые в 60-е годы считались самыми перспективными: искусственного интеллекта и робототехники. Вот почему в научно-фантастических произведениях роботов нередко называют "киберами". А в 90-е годы это слово опять всплыло для обозначения новых понятий, связанных с глобальными компьютерными сетями - появились такие неологизмы, как "киберпространство", "кибермагазины" и даже "киберсекс".

  

§2 Первое поколение  ЭВМ 

   Развитие  ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг от друга элементной базой и математическим обеспечением. Первое поколение (1945-1954) - ЭВМ на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой. Ввод чисел в первые машины производился с помощью перфокарт, а программное управление последовательностью выполнения операций осуществлялось, например в ENIAC, как в счетно-аналитических машинах, с помощью штеккеров и наборных полей. Хотя такой способ программирования и требовал много времени для подготовки машины, то есть для соединения на наборном поле (коммутационной доске) отдельных блоков машины, он позволял реализовывать счетные "способности" ENIAC'а и тем выгодно отличался от способа программной перфоленты, характерного для релейных машин. Солдаты, приписанные к этой огромной машине, постоянно носились вогруг нее, скрипя тележками, доверху набитыми электронными лампами. Стоило перегореть хотя бы одной лампе, как ENIAC тут же вставал, и начиналась суматоха: все спешно искали сгоревшую лампу. Одной из причин - возможно, и не слишком достоверной - столь частой замены ламп считалась такая: их тепло и свечение привлекали мотыльков, которые залетали внутрь машины и вызывали короткое замыкание. Если это правда, то термин "жучки" (bugs), под которым подразумевают ошибки в программных и аппаратных средствах компьютеров, приобретает новый смысл. Когда все лампы работали, инженерный персонал мог настроить ENIAC на какую-нибудь задачу, вручную изменив подключение 6 000 проводов. Все эти провода приходилось вновь переключать, когда вставала другая задача.

    Первой  серийно выпускавшейся ЭВМ 1-го  поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчики: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Он был первым электронным цифровым компьютером общего назначения. UNIVAC, работа по созданию которого началась в 1946 году и завершилась в 1951-м, имел время сложения 120 мкс, умножения -1800 мкс и деления - 3600 мкс. UNIVAC мог сохранять 1000 слов, 12000 цифр со временем доступа до 400 мкс максимально. Магнитная лента несла 120000 слов и 1440000 цифр. Ввод/вывод осуществлялся с магнитной ленты, перфокарт и перфоратора. Его первый экземпляр был передан в Бюро переписи населения США.

    Программное  обеспечение компьютеров 1-го  поколения состояло в основном  из стандартных подпрограмм. 

    Машины  этого поколения: « ENIAC », «МЭСМ», «БЭСМ», «IBM -701», «Стрела», «М-2», «М-3»,  «Урал», «Урал-2», «Минск-1», «Минск-12»,  «М-20» и др. Эти машины занимали большую площадь, использовали много электроэнергии и состояли из очень большого числа электронных ламп. Например, машина «Стрела» состояла из 6400 электронных ламп и 60 тыс. штук полупроводниковых диодов. Их быстродействие не превышало 2—3 тыс. операций в секунду, оперативная память не превышала 2 Кб. Только у машины «М-2» (1958) оперативная память была 4 Кб, а быстродействие 20 тыс. операций в секунду.  

Основные технические  характеристики ЭВМ "УРАЛ-1"

Структура команд одноадресная.

Система счисления  двоичная.

Способ представления  чисел - с фиксированной запятой  и с плавающей запятой по стандартным  программам.

Разрядность-35 двоичных разрядов (10,5 десятичных) и один разряд для знака числа.

Диапазон представляемых чисел: от 1 до 10-10.5.

Время выполнения отдельных операций:

а) деления - 20 мксек;

б) нормализации - 20 мсек;

в) остальных  операций-10 мсек.

Количество команд-29.

Характеристики  ЗУ:

емкость ОЗУ  на магнитном барабане - 1024 тридцатишестиразрядных числа или команды;

емкость НМЛ - до 40 000 тридцатишестиразрядных чисел  или 8000 команд.

Устройство ввода - на перфорированной киноленте шириной 35 мм.

Вывод - печатающее устройство. Скорость печати - 100±10 чисел  в минуту.

Машина построена  на одноламповых типовых ячейках.

Питание машины от сети трехфазного переменного  тока напряжением 220В ±10%, частотой 50Гц.

Потребляемая  мощность 7,5 кВт.

Занимаемая площадь 50 кв. м.

  

§3 Второе поколение  ЭВМ 

   ЭВМ 2-го  поколения были разработаны в  1950—60 гг. В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Второе отличие этих машин — это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров. Программирование, оставаясь наукой, приобретает черты ремесла. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

    Машины  этого поколения: «РАЗДАН-2», «IВМ-7090»,  «Минск-22,-32», «Урал- 14,-16», «БЭСМ-3,-4,-6», «М-220, -222» и др.

    Применение  полупроводников в электронных  схемах ЭВМ привели к увеличению  достоверности, производительности  до 30 тыс. операций в секунду,  и оперативной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.  

Основные технические характеристики ЭВМ "Урал-16":

Структура команд двухадресная.

Система счисления  двоичная,

Способ представления  чисел: с плавающей запятой.

Разрядность: 36 двоичных разрядов (мантисса числа  — 29 разрядов, знак мантиссы -- 1 разряд, порядок — 5 разрядов, знак порядка — 1 разряд).

Быстродействие 5000 операций/с.

Количество команд (основных) 17. Каждая операция имеет 8 модификаций.

Характеристики  запоминающих устройств.

Емкость ОЗУ  на ферритах 2 К слов; время обращения  к ОЗУ 24 мкс,

Емкость внешнего НМЛ 120000 чисел; скорость считывания с НМЛ 2000 чисел/с.

Устройства ввода  — вывода обеспечивают ввод информации в машину с фотосчитывающего устройства на кинолепте со скоростью 35 чисел/с  и вывод результатов вычислений на печатающее устройство со скоростью 20 чисел/с.

Питание машины от сети переменного тока напряжением 380/220 В, частотой 50 Гц.

Потребляемая  мощность около 3 кВт.

Занимаемая площадь 20 кв. м.

  

§4 Третье поколение  ЭВМ 

   Разработка  в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независимо друг от друга, оперативно взаимодействовать с машиной.

Информация о работе История ЭВМ