Искусственный интеллект

Автор: Татьяна Маневич, 06 Ноября 2010 в 20:12, реферат

Описание работы

С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.
Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта (ИИ), обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики. Оказалось, что прежде всего необходимо понять механизмы процесса обучения, природу языка и чувственного восприятия. Выяснилось, что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов.....

Содержание

* Введение
* Механический подход
* Электронный подход
* Кибернетический подход
* Нейронный подход
* Появление перцептрона
* Проблема искусственного интеллекта
* Заключение

Работа содержит 1 файл

ИИ.DOC

— 113.00 Кб (Скачать)

Нейронный подход. 

     К этому времени и другие  ученые стали  понимать,  что   создателям вычислительных машин   есть  чему  поучиться у биологии.  Среди них был нейрофизиолог  и поэт-любитель Уоррен Маккалох, обладавший как и Винер философским складом ума и широким кругом интересов.  В 1942 г.  Маккалох, участвуя в научной конференции в Нью-йорке, услышал доклад одного из сотрудников  Винера о механизмах обратной связи в биологии.  Высказанные в докладе идеи перекликались с собственными  идеями  Маккалоха относительно работы головного мозга.  В течении следующего года Маккалох в соавторстве со своим 18-летним  протеже,  блестящим  математиком Уолтером Питтсом,  разработал теорию деятельности головного мозга. Эта теория и являлась той основой,  на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.

     Исходя отчасти из предшествующих  исследований нейронов  (основных  активных клеток,  составляющих  нервную систему животных),  проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно  рассматривать как  устройства, оперирующие двоичными числами. Двоичные числа, состоящие из цифр единица и нуль, - рабочий инструмент одной  из систем  математической логики.  Английский математик XIXв.

     Джордж Буль,  предложивший эту остроумную систему,  показал, что логические утверждения можно закодировать в виде единиц и нулей,  где единица соответствует истинному высказыванию а нуль - ложному, после чего этим можно оперировать как обычными числами. В 30-е годы XX в. пионеры информатики, в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для  электронно-вычислительных устройств. Маккалох и Питтс предложили конструкцию сети из электронных "нейронов" и  показа-

ли,  что  подобная  сеть может выполнять  практически любые вообразимые  числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться,  распознавать образы, обобщать, т.е. она обладает всеми чертами интеллекта.

     Теории Маккаллоха-Питтса в сочетании  с книгами Винера (2) вызвали огромный  интерес к разумным машинам.  В 40-60-е годы все больше кибернетиков  из  университетов  и частных фирм запирались в лабораториях и мастерских, напряженно работая над теорией функционирования  мозга  и методично припаивая электронные компоненты моделей нейронов.

     Из этого кибернетического,  или нейромодельного, подхода к машинному разуму  скоро сформировался так называемый "восходящий метод" - движение от простых аналогов нервной системы примитивных существ,  обладающих малым числом нейронов,  к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании "адаптивной сети", "самоорганизующейся  системы" или "обучающейся машины" - все эти названия разные исследователи использовали для обозначения устройств, способных следить  за окружающей обстановкой и с помощью обратной связи изменять свое поведение в полном соответствии с господствовавшей в  те  времена бихевиористской  школой психологии,  т.е.  вести себя так же как живые организмы. Однако отнюдь не во всех случаях возможна аналогия с живыми организмами.  Как  однажды  заметили  Уоррен Маккаллох и его сотрудник Майкл Арбиб, "если по весне вам захотелось обзавестись  возлюбленной, не стоит брать амебу и ждать пока она эволюционирует".

     Но дело здесь не только  во времени. Основной трудностью, с которой столкнулся "восходящий метод" на заре своего существования, была высокая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. нейронов.  Даже  самые  совершенные кибернетические модели содержали лишь несколько сотен нейронов. Столь ограниченные возможности  обескуражили многих исследователей того периода. 

Появление перцептрона. 

     Одним из тех, кого ничуть не испугали трудности был Фрэнк Розенблат, труды которого казалось отвечали самым заметным устремлениям кибернетиков. В середине 1958 г.  им была предложена модель электронного устройства, названного им перцептроном,  которое должно было бы имитировать процессы человеческого мышления.  Перцептрон должен был передавать сигналы  от  "глаза",  составленного  из  фотоэлементов,  в блоки электромеханических ячеек памяти,  которые оценивали относительную величину электрических сигналов. Эти ячейки соединялись между собой случайным образом в соответствии с господствующей тогда теорией, согласно которой мозг  воспринимает  новую  информацию и реагирует на нее через систему случайных связей между нейронами.  Два года спустя была продемонстрирована первая  действующая машина "Марк-1",  которая могла научится распознавать некоторые из букв, написанных на карточках, которые подносили к его "глазам", напоминающие кинокамеры. Перцептрон Розенблата оказался наивысшим достижением "восходящего", или нейромодельного метода создания  искусственого  интеллекта.  Чтобы  научить перцептрон способности строить догадки на основе исходных предпосылок, в нем предусматривалась некая  элементарная разновидность автономной работы или "самопрограммирования". При распознании той или  иной  буквы  одни  ее элементы или  группы элементов оказываются гораздо более существеными, чем другие. Перцептрон мог научаться выделять такие характерные  особенности буквы  полуавтоматически,  своего рода методом проб и ошибок, напоминающим процесс обучения. Однако возможности перцептрона были ограниченными: машина  не  могла  надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка, нежели те, которые использовались на этапе ее обучения.

     Ведущие представители так называемого "нисходящего метода" специализировались,  в отличие от представителей  "восходящего  метода",  в составлении для цифровых компьютеров общего назначения программ решения задач,  требующих от людей значительного интеллекта,  например для игры в шахматы или поиска математических доказательств. К числу защитников "нисходящего метода" относились Марвин Минский и Сеймур Пейперт, профессора  Массачусетского технологического института.  Минский начал свою карьеру исследователя ИИ сторонником "восходящего  метода"  и  в 1951 г.  построил обучающуюся сеть на вакуумных электронных лампах. Однако вскоре к моменту создания перцептрона он перешел в противоположный лагерь.  В соавторстве с южно-африканским математиком Пейпертом,  с которым его познакомил Маккаллох, он написал книгу "Перцептроны"(3), где математически доказывалось, что перцептроны, подобные розенблатовсим,  принципиально не в состоянии выполнять  многие  из  тех функций, которые предсказывал им Розенблат. Минский утверждал, что, не говоря о роли работающих под диктовку  машинисток,  подвижных  роботов или машин,  способных читать, слушать и понимать прочитанное или услышанное,  перцептроны никогда не обретут даже умения распознавать предмет частично заслоненный другим.  Глядя на торчащий из-за кресла коша-

чий хвост, подобная машина никогда не сможет понять, что она видит.

     Нельзя сказать,  что появившаяся  в 1969 г. эта критическая работа  покончила с  кибернетикой.  Она  лишь переместила интерес  аспирантов и субсидии правительственных  организаций США, традиционно финансирующих исследования по  ИИ,  на другое направление исследований - "нисходящий метод".

     Интерес к кибернетике в последнее  время возродился,  так как  сторонники "нисходящего метода" столкнулись со столь же неодолимыми  трудностями. Сам  Минский публично выразил сожаление,  что его выступление нанесло урон концепции перцептронов, заявив, что, согласно его теперешним представлениям,  для реального прорыва вперед в создании разумных машин потребуется устройство , во многом похожее на перцептрон. Но в основном ИИ стал синонимом нисходящего подхода,  который выражался в составлении все более сложных программ для  компьютеров,  моделирующих сложную деятельность человеческого мозга. 

Проблема  искусственного интеллекта 

    Гносеологический анализ проблемы искусственного интеллекта вскрывает роль таких познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Они обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, а выявляются в знании, в его языковом выражении. Орудия познания, формирующиеся, в конечном счете, на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от ее конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления, т. е. в конечном счете, формирующую адекватные схемы внешних действий в существенно меняющихся средах, необходимо наделить такую систему этими орудиями.

Развитие  систем искусственного интеллекта за последние десятилетия идет по этому  пути. Однако степень продвижения  в данном направлении в отношении каждого из указанных познавательных орудий неодинакова и в целом пока незначительна.

1. В наибольшей мере системы искусственного интеллекта используют формально-логические структуры, что обусловлено их неспецифичностью для мышления и, в сущности, алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Однако даже здесь кибернетике предстоит пройти большой путь. В системах искусственного интеллекта еще слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернетикой формы вывода. Повышение "интеллектуального" уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием (для проверки информации на непротиворечивость, конструирования планов вычислений и т. д.).

2. Намного сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен. Языки, используемые в ЭВМ, еще далеки от семиотических структур, которыми оперирует мышление.

Прежде  всего, для решения ряда задач  необходимо последовательное приближение  семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например полисемией (которая элиминируется при обработке в лингвистическом процессоре). Разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом этой работы является создание семантических языков (и их формализация), в которых слова-символы имеют интерпретацию.

    Однако многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках искусственного интеллекта пока реализованы слабо (например, открытость) или используются ограниченно (например, полисемия). Все большее воплощение в семиотических системах универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем искусственного интеллекта, особенно тех, в которых проблемная область заранее жестко не определена.

    Современные системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, высвечивать на экранах кривые и т. д. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов). Такого рода перевод является существенным элементом интеллектуальной деятельности. Но современные системы искусственного интеллекта пока не способны к непосредственному (без перевода на символический язык) использованию изображений или воспринимаемых сцен для "интеллектуальных" действий. Поиск путей глобального (а не локального) оперирования информацией составляет одну из важнейших и перспективных задач теории искусственного интеллекта.

3. Воплощение в информационные массивы и программы систем искусственного интеллекта аналогов категорий находится пока в начальной стадии. Аналоги некоторых категорий (например, "целое", "часть", "общее", "единичное") используются в ряде систем представления знаний, в частности в качестве "базовых отношений", в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы.

    В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные (теоретически существенные и практически важные) попытки выражения некоторых моментов содержания и других категорий (например, "причина", "следствие"). Однако ряд категорий (например, "сущность", "явление") в языках систем представления знаний отсутствует. Проблема в целом разработчиками систем искусственного интеллекта в полной мере еще не осмыслена, и предстоит большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний и другие компоненты интеллектуальных систем. Это одно из перспективных направлений в развитии теории и практики кибернетики.

4. Современные системы искусственного интеллекта почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т. д.

    Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах, использующихся при представлении знаний,  пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и т. д.

Информация о работе Искусственный интеллект