Имитационное моделирование

Автор: Пользователь скрыл имя, 19 Января 2012 в 10:58, реферат

Описание работы

Имитационное моделирование — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивуюстатистику.

Содержание

1. Что такое имитационное моделирование.
2. Область адекватности модели.
3. Сущность основных процедур имитационного моделирования.

Работа содержит 1 файл

имит модел.docx

— 48.78 Кб (Скачать)

Содержание: 
 

  1. Что такое  имитационное моделирование.
  2. Область адекватности модели.
  3. Сущность основных  процедур имитационного  моделирования.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  1.Что такое имитационное моделирование. 

    Имитационное моделирование — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивуюстатистику.

    Имитационное моделирование — это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему и с ней проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация — это постижение сути явления, не прибегая к экспериментам на реальном объекте).

     Имитационное моделирование — это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

    Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основеаналитических решений или с помощью численных методов[1].

    Имитационная модель — логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

                    

                         2.Область адекватности модели. 
 

      Применение имитационного  моделирования

 К имитационному моделированию прибегают, когда:

  • дорого или невозможно экспериментировать на реальном объекте;
  • невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
  • необходимо сымитировать поведение системы во времени.

     Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами — разработке симулятора (англ. simulation modeling) исследуемой предметной области для проведения различных экспериментов.

     Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны. С наступлением эпохи персональных компьютеров производство сложных и уникальных изделий, как правило, сопровождается компьютерным трёхмерным имитационным моделированием. Эта точная и относительно быстрая технология позволяет накопить все необходимые знания, оборудование и полуфабрикаты для будущего изделия до начала производства[2]. Компьютерное 3D моделирование теперь не редкость даже для небольших компаний[3].

     Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950-х — 1960-хгодах.

Можно выделить две разновидности имитации:

  • Метод Монте-Карло (метод статистических испытаний);
  • Метод имитационного моделирования (статистическое моделирование).
 

    Виды статического  моделирования

  • Агентное моделирование — относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
  • Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.
  • Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основанДжеем Форрестером в 1950 годах.
 
 

Область применения

  • Бизнес-процессы
  • Боевые действия
  • Динамика населения
  • Дорожное движение
  • ИТ-инфраструктура
  • Математическое моделирование исторических процессов
  • Логистика
  • Пешеходная динамика
  • Производство
  • Рынок и конкуренция
  • Сервисные центры
  • Цепочки поставок
  • Уличное движение
  • Управление проектами
  • Экономика здравоохранения
  • Экосистема
  • Информационная безопасность
 
 
 
 
 
 

3.Сущность  основных  процедур  имитационного   моделирования. 

    Компьютерное  моделирование как новый метод  научных исследований основывается  на:

  1. построении математических моделей для описания изучаемых процессов;
  2. использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

    Суть  компьютерного моделирования состоит  в следующем: на основе математической  модели с помощью ЭВМ проводится  серия вычислительных экспериментов,  т.е. исследуются свойства объектов  или процессов, находятся их  оптимальные параметры и режимы  работы, уточняется модель. Например, располагая уравнением, описывающим  протекание того или иного  процесса, можно изменяя его коэффициенты, начальные и граничные условия,  исследовать, как при этом будет  вести себя объект. Имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

    Реальные  процессы и системы можно исследовать  с помощью двух типов математических  моделей: аналитических и имитационных.

    В  аналитических моделях поведение  реальных процессов и систем (РПС)  задается в виде явных функциональных  зависимостей (уравнений линейных  или нелинейных, дифференциальных  или интегральных, систем этих  уравнений). Однако получить эти  зависимости удается только для  сравнительно простых РПС. Когда явления сложны и многообразны исследователю приходится идти на упрощенные представления сложных РПС. В результате аналитическая модель становится слишком грубым приближением к действительности. Если все же для сложных РПС удается получить аналитические модели, то зачастую они превращаются в трудно разрешимую проблему. Поэтому исследователь вынужден часто использовать имитационное моделирование.

    Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течении заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.

    Имитационное моделирование - это совокупность методов алгоритмизации функционирования объектов исследований, программной реализации алгоритмических описаний, организации, планирования и выполнения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими функционирование РПС в течении заданного периода.

    Под  алгоритмизацией функционирования  РПС понимается пооперационное  описание работы всех ее функциональных  подсистем отдельных модулей  с уровнем детализации, соответствующем комплексу требований к модели.

     "Имитационное  моделирование" (ИМ)- это двойной термин. "Имитация" и "моделирование" - это синонимы. Фактически все области науки и техники являются моделями реальных процессов. Чтобы отличить математические модели друг от друга, исследователи стали давать им дополнительные названия. Термин "имитационное моделирование" означает, что мы имеем дело с такими математическими моделями, с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели при заданных исходных данных.

     Основное  достоинство ИМ:

  1. возможность описания поведения компонент (элементов) процессов или систем на высоком уровне детализации;
  2. отсутствие ограничений между параметрами ИМ и состоянием внешней среды РПС;
  3. возможность исследования динамики взаимодействия компонент во времени и пространстве параметров системы;

Эти достоинства  обеспечивают имитационному методу широкое распространение.

Рекомендуется использовать имитационное моделирование в следующих случаях:

  1. Если не существует законченной постановки задачи исследования и идет процесс познания объекта моделирования. Имитационная модель служит средством изучения явления.
  2. Если аналитические методы имеются, но математические процессы сложны и трудоемки, и имитационное моделирование дает более простой способ решения задачи.
  3. Когда кроме оценки влияния параметров (переменных) процесса или системы желательно осуществить наблюдение за поведением компонент (элементов) процесса или системы (ПС) в течение определенного периода.
  4. Когда имитационное моделирование оказывается единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях (реакции термоядерного синтеза, исследования космического пространства).
  5. Когда необходимо контролировать протекание процессов или поведение систем путем замедления или ускорения явлений в ходе имитации.
  6. При подготовке специалистов для новой техники, когда на имитационных моделях обеспечивается возможность приобретения навыков в эксплуатации новой техники.
  7. Когда изучаются новые ситуации в РПС. В этом случае имитация служит для проверки новых стратегий и правил проведения натурных экспериментов.
  8. Когда особое значение имеет последовательность событий в проектируемых ПС и модель используется для предсказания узких мест в функционировании РПС.

Информация о работе Имитационное моделирование