Функциональное тестирование Web-приложений на основе технологии UniTesK

Автор: Пользователь скрыл имя, 11 Марта 2012 в 13:43, реферат

Описание работы

В данной статье Web-приложениями мы будем называть любые приложения, предоставляющие Web-интерфейс. В настоящее время такие приложения получают все большее распространение: системы управления предприятиями и драйверы сетевых принтеров, интернет-магазины и коммутаторы связи – это только небольшая часть приложений, обладающих Web интерфейсом. В отличие от обычного графического пользовательского интерфейса Web-интерфейс отображается не самим приложением, а стандартизированным посредником – Web-браузером.

Содержание

Введение……………………………………………………….......................2
Существующие подходы……..……………………………………………..4
Технология UniTesK………………………………………………………....6
Применение UniTesK для тестирования Web-приложений……………….8
Дополнительная инструментальная поддержка……………………………9
Направления дальнейшего развития………………………………………14
Заключение……………………………………………………

Работа содержит 1 файл

referat ergalieva.doc

— 106.00 Кб (Скачать)


СОДЕРЖАНИЕ

 

Введение……………………………………………………….......................2

Существующие подходы……..……………………………………………..4

Технология UniTesK………………………………………………………....6

Применение UniTesK для тестирования Web-приложений……………….8

Дополнительная инструментальная поддержка……………………………9

Направления дальнейшего развития………………………………………14

Заключение………………………………………………………………….15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Функциональное тестирование Web-приложений на основе технологии UniTesK

 

ВВЕДЕНИЕ

 

В данной статье Web-приложениями мы будем называть любые приложения, предоставляющие Web-интерфейс. В настоящее время такие приложения получают все большее распространение: системы управления предприятиями и драйверы сетевых принтеров, интернет-магазины и коммутаторы связи – это только небольшая часть приложений, обладающих Web интерфейсом. В отличие от обычного графического пользовательского интерфейса Web-интерфейс отображается не самим приложением, а стандартизированным посредником – Web-браузером. Web-браузер берет на себя все взаимодействие с пользователем и обращается к Web-приложению только в случае необходимости.

При обращении к Web-приложению браузер посылает запрос по одному из протоколов доступа (HTTP, HTTPS или др.). Web-приложение обрабатывает запрос и возвращает браузеру описание обновленного интерфейса.

Web-приложения в первую очередь характеризуются тем, что их пользовательский интерфейс имеет стандартизированную архитектуру, в которой:

1)  для взаимодействия с пользователем используется Web-браузер;

2)  взаимодействие с пользователем четко разделяется на этапы, в течение которых браузер работает с одним описанием интерфейса;

3) эти этапы разделяются однозначно выделяемыми обращениями от браузера к приложению;

4) для описания интерфейса применяется стандартное представление ((HTML);

5) коммуникации между браузером и приложением осуществляются по стандартному протоколу (HTTP).

Web-приложения можно рассматривать как клиент/серверные приложения, в которых функциональность реализуется как на серверной, так и на клиентской стороне. Функциональность, реализованная на клиентской стороне, как правило, сводится к проверке вводимых данных и реализации дополнительных возможностей интерфейса, что реализуется путем использования скриптовых возможностей, встроенных в HTML (использование Java-script, VBScript и т.д.)2.

В этой статье мы будем рассматривать функциональное тестирование именно серверной части, оставляя рассмотрение функциональности клиентской части в качестве темы будущих исследований. В этом случае основной интерес представляют взаимодействия браузера с сервером. Эти взаимодействия хорошо формализованы, поскольку осуществляются на основе протокола HTTP. Четкая формализация взаимодействий может служить основой для автоматизации функционального тестирования.

С другой стороны, представление интерфейса в виде HTML также четко формализовано. Кроме того, в этом описании интерфейса можно выделить действия, приводящие к взаимодействию с сервером. Эти действия связаны с воздействиями на кнопки, активизацией гиперссылок и реакциями на различные события, закодированные в скриптовой части интерфейса. Таким образом, формальное описание интерфейса Web-приложений также предоставляет широкие возможности для автоматизации функционального тестирования.

Но как наилучшим образом использовать потенциал, предоставляемый стандартизированной архитектурой интерфейса Web-приложения? Исследованию этого вопроса и посвящена данная работа.

Статья построена следующим образом. В разделе 2 мы рассмотрим существующие подходы к автоматизации функционального тестирования Web-приложений. В разделе 3 будут представлены основные сведения о технологии автоматизации тестирования на основе моделей UniTesK. Затем мы проанализируем различные варианты моделирования Web-приложений в рамках технологии UniTesK и по результатам этого анализа представим расширение базовой технологии UniTesK, специально адаптированное для функционального тестирования Web-приложений. В заключение, мы рассмотрим пути дальнейшего развития предложенного подхода.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Существующие подходы к функциональному тестированию Web-приложений

 

Самым распространенным является подход, называемый Capture & Playback (другие названия – Record & Playback, Capture & Replay). Суть этого подхода заключается в том, что сценарии тестирования создаются на основе работы пользователя с тестируемым приложением. Инструмент перехватывает и записывает действия пользователя, результат каждого действия также запоминается и служит эталоном для последующих проверок. При этом в большинстве инструментов, реализующих этот подход, воздействия (например, нажатие кнопки мыши) связываются не с координатами текущего положения мыши, а с объектами HTML-интерфейса (кнопки, поля ввода и т.д.), на которые происходит воздействие, и их атрибутами. При тестировании инструмент автоматически воспроизводит ранее записанные действия и сравнивает их результаты с эталонными, точность сравнения может настраиваться. Можно также добавлять дополнительные проверки – задавать условия на свойства объектов (цвет, расположение, размер и т.д.) или на функциональность приложения (содержимое сообщения и т.д.). Все коммерческие инструменты тестирования, основанные на этом подходе, хранят записанные действия и ожидаемый результат в некотором внутреннем представлении, доступ к которому можно получить, используя или распространенный язык программирования (Java в Solex [2]), или собственный язык инструмента (4Test в SilkTest [3] от Segue, SQABasic в Rational Robot [4] от IBM, TSL в WinRunner [5] от Mercury). Кроме элементов интерфейса, инструменты могут оперировать HTTP-запросами (например, Solex [2]), последовательность которых также может записываться при работе пользователя, а затем модифицироваться и воспроизводиться.

Основное достоинство этого подхода – простота освоения. Создавать тесты с помощью инструментов, реализующих данный подход, могут даже пользователи, не имеющие навыков программирования. Вместе с тем, у подхода имеется ряд существенных недостатков. Для разработки тестов не предоставляется никакой автоматизации; фактически, инструмент записывает процесс ручного тестирования. Если в процессе записи теста обнаружена ошибка, то в большинстве случаев создать тест для последующего использования невозможно, пока ошибка не будет исправлена (инструмент должен запомнить правильный результат для проверки). При изменении тестируемого приложения набор тестов трудно поддерживать в актуальном состоянии, так как тесты для изменившихся частей приложения приходится записывать заново.

Этот подход лучше всего использовать для создания прототипа теста, который впоследствии может служить основой для ручной доработки. Одна из возможных доработок – параметризация теста для проверки тестируемого приложения на различных данных. Этот подход называется тестированием, управляемым данными (Data Driven [6, 7]). Основное ограничение – перебираемые данные не должны изменять поведение тестируемого приложения, поскольку проверки, записанные в тестовом сценарии, не подразумевают какой-либо анализ входных данных, т.е. для каждого варианта поведения нужно создавать свой сценарий тестирования со своим набором данных. Некоторые инструменты, реализующие Capture & Playback, предоставляют возможность по перебору данных (например, e-Tester [8] от Empirix); кроме того, над большинством распространенных инструментов существуют надстройки (Convergys Auto Tester [6] – надстройка над WinRunner).

Описанные подходы основываются на построении тестов с использованием тестируемого приложения. В подходе KeywordDriven [7, 9] предпринимается попытка сделать процесс создания тестов независимым от реализации. Суть подхода заключается в том, что действия, выполняемые в ходе тестирования, описываются в виде последовательности ключевых слов из специального словаря («нажать», «ввести», «проверить» и т.д.). Специальный компонент тестовой системы переводит эти слова в воздействия на элементы интерфейса тестируемого приложения. Таким образом, никакого программирования для создания тестов не нужно. Единственное, что нужно менять при изменении интерфейса, – это компонент, который отвечает за перевод слов из «словаря» в последовательность воздействий на приложение. Комплект тестов может разрабатываться пользователями, не владеющими навыками программирования, однако для поддержания комплекта в рабочем состоянии программирование все-таки необходимо. В качестве примера инструмента, поддерживающего такой подход к разработке тестов, можно привести Certify [10] от WorkSoft, в котором поддерживается библиотека функций для работы с каждым компонентом интерфейса (окна, гиперссылки, поля ввода и т.д.) и предоставляется язык воздействий на эти элементы (InputText, VerifyValue, VerifyProperty и т.д.).

Основные преимущества этого подхода заключаются в том, что он позволяет создавать тесты, не дожидаясь окончания разработки приложения, руководствуясь требованиями и дизайном интерфейса. Созданные тесты можно использовать как для автоматического выполнения, так и для ручного тестирования.

Основной недостаток этого подхода – отсутствие автоматизации процесса разработки тестов. В частности, все тестовые последовательности разрабатываются вручную, что приводит к проблемам, как на стадии разработки, так и на стадии сопровождения тестового набора. Эти проблемы особенно остро проявляются при тестировании Web‑приложений со сложным интерфейсом.

 

 

 

2. Технология UniTesK

 

Большинство проблем, присущих рассмотренным подходам разработки тестов, решены в технологии UniTesK, разработанной в Институте системного программирования РАН. Технология хорошо себя зарекомендовала при функциональном тестировании разнообразных систем (ядро операционной системы, стеки протоколов, компиляторы). Опыт применения технологии для тестирования Web-приложений показал, что UniTesK может служить хорошей базой для тестирования такого класса приложений. В этом разделе мы остановимся на основных моментах технологии UniTesK (более детальную информацию о ней можно найти в [11, 12, 13, 14]); в последующих разделах рассмотрим особенности применения технологии для тестирования Web-приложений.

Технология UniTesK – это технология разработки функциональных тестов на основе моделей, которые используются для оценки корректности поведения целевой системы3 и автоматической генерации последовательностей воздействий, далее называемых тестовыми последовательностями.

Оценка корректности поведения целевой системы осуществляется в рамках следующего представления об устройстве интерфейса целевой системы. Предполагается, что целевая система предоставляет набор интерфейсных функций, и все воздействия на нее осуществляются только через вызовы этих интерфейсных функций. Параметры воздействий, передаваемые целевой системе, описываются входными параметрами интерфейсной функции. Результат воздействия (реакция системы) представляется выходными параметрами, значения которых могут зависеть от истории взаимодействий целевой системы с окружением. Информация об истории моделируется внутренним состоянием целевой системы. Внутреннее состояние влияет на выходные параметры интерфейсных функций и может изменяться в результате их работы.

Следует заметить, что в рамках данной статьи для тестирования Web-приложений рассматривается представление, в котором воздействия на целевую систему и получение ее реакции на это воздействие (выходные параметры интерфейсной функции) рассматриваются как атомарное действие. Под атомарностью действия понимается, что следующее воздействие можно произвести только после получения реакции на предыдущее. Технология UniTesK также позволяет представлять целевую систему и как систему с отложенными реакциями, т.е. как систему, разрешающую воздействие до получения всех реакций на предыдущее.

Корректность поведения целевой системы оценивается с точки зрения его соответствия поведению некоторой «эталонной» модели, называемой спецификацией. В технологии UniTesK эталонная модель описывается неявно в виде требований к поведению каждой интерфейсной функции.               При задании эталонной модели можно описывать функции и их параметры в достаточно обобщенном виде, отвлекаясь от несущественных подробностей.

В качестве языка описания компонентов тестовой системы используются спецификационные расширения обычных языков программирования, таких как C# и Java. В этих расширениях реализованы три вида специальных классов, предназначенных для описания компонентов тестовой системы. Из спецификационных классов генерируются оракулы, из медиаторных – медиаторы, а из сценарных – итераторы тестовых воздействий.

Оракул, зная значения входных и выходных параметров интерфейсной функции, а также состояние целевой системы, оценивает корректность ее поведения в рамках данного взаимодействия. Если вердикт оракула является отрицательным, то это значит, что тестовая система нашла несоответствие между поведением целевой системы и требованиями к ней. По завершении выполнения одного шага управление возвращается обходчику, который выбирает следующее сценарное воздействие или принимает решение о прекращении тестирования.

Информация о работе Функциональное тестирование Web-приложений на основе технологии UniTesK