Аутентификация в GSM. Механизмы обеспечения безопасности

Автор: Пользователь скрыл имя, 04 Марта 2013 в 20:14, лабораторная работа

Описание работы

Механизмы обеспечения безопасности включают четыре основных пункта: Аутентификацию, Шифрование, Переназначение TMSI, Идентификацию оборудования.
Непосредственно в самой GSM-сети за аутентификацию отвечает AUC (Центр Аутентификации), генерирующий определенные данные, необходимые во всей последовательности. В самом AUC постоянно хранятся специальные алгоритмы (A3 и A8), IMSI (уникальный идентификатор мобильной станции) и индивидуальный ключ идентификации Ki, а также генератор случайных чисел, отвечающий за выдачу некоторых чисел RAND.

Работа содержит 1 файл

Аутентификация в GSM.docx

— 490.48 Кб (Скачать)

Ключ аутентификации пользователя Ki уникален и однозначно связан с IMSI, оператор связи по значению IMSI «умеет» определять Ki и вычисляет ожидаемый результат. От несанкционированного использования SIM защищена вводом индивидуального идентификационного номера (PIN-код — Personal Identification Number), который присваивается пользователю вместе с самой картой.

Рассмотрим процедуру  проверки подлинности абонента. Сеть генерирует оказию — случайный номер (RAND) и передаёт его на мобильное устройство. В Sim-карте происходит вычисление значения отклика (SRES — Signed Response) и сеансового ключа, используя RAND, Ki и алгоритмы A3,А8. Мобильное устройство вычисляет SRES и посылает его в сеть, которая сверяет его с тем, что вычислила сама. Если оба значения совпадают, то аутентификация пройдена успешно и мобильное устройство получает от сети команду войти в шифрованный режим работы. Из-за секретности все вычисления происходят внутри SIM. Секретная информация (такая как Ki) не поступает вне SIM-карты. Ключ Kc также не передаётся по радиоканалу. Подвижная станция и сеть вычисляют их отдельно друг от друга.

Общие утверждения

На вход алгоритму подается 128-битный (16 байт) RAND, полученный от базовой станции и 128-битный Ki, прошитый в Sim-ке. Выходом является 96-битная (12 байт) последовательность. Спецификация стандарта утверждает, что первые 4 байта являются SRES, который мобильный аппарат отправляет для аутентификации, а байты с 5-го по 12-й — это сессионный ключ Kc. Следует заметить, что биты ключа: с 42 по 95, за которыми идут 10 нулей. То есть у 64-битного ключа Kc энтропия не превосходит 54 бита. Это представляет существенное ослабление криптостойкости шифра A5 более чем в 1000 раз.

 

 

Передача соединения (хэндовер)

В сотовой сети радиоресурсы и фиксированные линии связи в течение вызова не остаются занятыми постоянно. Хэндовер (передача соединения), или хэндофф (handoff), как его называют в Северной Америке, — это переключение каналов и линий по мере перемещения подвижного объекта по различным каналам или ячейкам сотовой сети. Обнаружение и измерение уровня радиосигналов для хэндовера составляют одну из основных функций уровня RRM (Radio Resources Management).

Хэндоверы принято разделять на четыре типа, указанных цифрами на рис. 1.15:

  1. Смена каналов в пределах одной базовой станции.
  2. Смена канала одной базовой станции на канал другой станции, но находящейся под управлением того же BSC.
  3. Переключение каналов между базовыми станциями, контролируемыми разными BSC, но одним MSC.
  4. Переключение каналов между базовыми станциями, за которые отвечают не только разные BSC, но и разные MSC.

 
Рис. 1.15.  Варианты хэндовера

 

В общем случае проведение хэндовера — задача MSC. Но в двух первых случаях, называемых внутренними хэндоверами, чтобы снизить нагрузку на коммутатор и служебные линии связи, процесс смены каналов управляется BSC, а MSC лишь информируется о происшедшем.

Первые два типа передачи соединения называются внутренними передачами соединения и включают только один контроллер базовой станции (BSC). Чтобы  сохранять способность обмена сигналами, достаточно взаимодействия базовых  станций (BSC), без использования управления центра коммутации мобильной связи (MSC). После окончания передачи соединения (хэндовера) необходимо уведомить об этом событии коммутации мобильной связи (MSC).

Последние два типа передачи соединения называются внешними передачами соединения и обрабатываются центрами коммутации мобильной связи (MSC), участвующими в  соединении. Важный аспект — то, что  первоначальный MSC (anchor MSC — анкерный центр ), который обеспечивает доступ к сети, остается ответственным за большинство переключений.

Передачи соединения (хэндовер) могут быть инициализированы или мобильной станцией, или центром коммутации мобильной связи (MSC). MS по широковещательному каналу управления (BCCH) проводит сканирование не менее 16 соседних сот, и формируется список шести лучших кандидатов на возможную передачу соединения, основанную на полученной напряженности поля сигналов. Эта информация передается к BSC и MSC не менее одного раза в секунду для использования алгоритмом передачи соединения (хэндовера).

Алгоритм момента времени, когда  должно быть принято решение передачи соединения (хэндовер), не определен в рекомендациях GSM. Есть два основных используемых алгоритма, оба тесно связаны с управлением мощностью. Это объясняется тем, что базовая станция (BSC) обычно не знает, является ли плохое качество сигнала следствием замирания из-за многолучевости или следствием перемещения мобильной станции к другой ячейке. Особенно часто это происходит при маленьких городских ячейках.

Алгоритм "минимально допустимая характеристика" дает приоритет  управлению мощностью, а не передаче соединения (хэндоверу). Когда сигнал ухудшился до некоторой заданной точки, уровень мощности мобильной станции увеличивается с помощью управления. Если дальнейшее увеличение мощности не улучшает сигнал, то начинают передачу соединения (хэндовер). Это наиболее простой и наиболее общий метод, но он создает эффект "расплывчатой границы" соты, когда мобильная станция передает сигналы, используя пиковую мощность, проходя некоторое расстояние вне границы ячейки исходной соты в другую соту.

"Метод бюджета мощности" предоставляет приоритет передаче  соединения (хэндоверу). Целью является поддержание или улучшение качества сигнала при том же самом или более низком уровне мощности. В этом случае отсутствует проблема "расплывчатой границы" соты и уменьшаются межканальные помехи, но весьма усложняется алгоритм.

Рассмотрим процесс обмена сигналами, показанный на рис. 1.16, как хэндовер 4-го типа. Ниже приводится его описание.

  1. Когда MS включена, она периодически извещает о качестве сигналов BTS1 с помощью сообщения об измерении. Эти сообщения передаются в каждом SACHH (низкоскоростной выделенный канал управления) с периодичностью 480 мсек. Сообщение об измерении содержит измерения качества сигналов соседних ячеек.
  2. Если качество сигнала хорошее, то MS не предпринимает никаких действий. Когда MS достигает границы между зонами обслуживания MSC2 и MSC1, она извещает BTS1, что получает слабый сигнал.
  3. BTS1 принимает решение об инициализации процесса хэндовер для того, чтобы улучшить качество обслуживания MS, и передает результаты измерений BSC1, включая измерения качества сигналов соседних ячеек BSC1.
  4. BSC1 проводит анализ результатов измерения, чтобы определить зону обслуживания с лучшим качеством.
  5. Если BSC1 решает запросить хэндовер, то он передает MSC1 номер используемой соты и список целевых сот с лучшими показателями, чем у используемой соты. При этом станция BTS2 включена в список целевых сот. На BSC1 включается таймер, чтобы ограничить время ожидания начала хэндовера (поступления сигнала от MSC1 о начале процесса хэндовера).
  6. MSC1 передает запрос на хэндовер к MSC2. При этом из регистра MSC1 (это может быть VLR или HLR) передаются данные для маршрутизации и аутентификации. На MSC1 включается таймер, чтобы ограничить время ожидания начала хэндовера в зоне обслуживания MSC2 (время ответа от BCS2).
  7. На MSC2 запрос на передачу соединения обрабатывается как новый исходящий вызов и выбирается канал для нового вызова. Новые данные записываются в VLR MSC2. VLR MSC2 обеспечивает присвоение номера "блуждающей" подвижной станции (MSRN — Mobile Station Roaming Number). Процедурами установления подлинности во время обработки вызова управляет VLR MSC2.
  8. Передача подтверждения запроса хэндовера от MSC2 (начало хэндовера) к MSC1. На MSC1 отключается таймер, ограничивающий время ожидания начала хэндовера (см. п. 7), так как получена команда о начале хэндовера. Если MSC1 был центром визита, то данные на VLR MSC1 стираются. Если он был домашним центром, то текущий адрес VLR абонента, содержащийся в HLR, также обновляется.
  9. MSC1 передает сообщение BSC1, что соединение закончено.
  10. BSС1 освобождает канал и информирует MSC1, что разъединение закончено.
  11. MSC1 освобождает оборудование и передает MSC2 сигнал окончания процедуры.

 
Рис. 1.16.  Обмен сигналами при хэндовере

Роуминг

Роуминг — одна из самых  важных функций сотовой связи. Необходимость  в роуминге возникает каждый раз, когда абонент изменяет свое местоположение и перемещается в сеть, принадлежащую другому оператору. Роуминг бывает локальный (переезд внутри города или в пригород), национальный (в другой город или область) и международный (переезд в другую страну).

При перемещении абонента в другую сеть ее центр коммутации мобильной связи (MSK/VLR) запрашивает информацию в первоначальной сети (MSK/HLR) и при наличии подтверждения полномочий абонента регистрирует его. Данные о местоположении абонента постоянно обновляются в центре коммутации первоначальной сети (MSK/HLR), и все поступающие туда вызовы автоматически переадресовываются в ту сеть, где в данный момент находится абонент.

 

По способу регистрации  различают следующие виды роуминга:

  • автоматический, т. е. с возможностью провести процесс хэндовера;
  • полуавтоматический, когда предварительно следует оповестить оператора о намерении посетить соответствующий регион;
  • ручной, при котором абоненту вручается радиотелефон, включенный в сеть визита.

Для обеспечения роуминга необходимо выполнение следующих условий:

  • наличие в требуемых регионах сотовых систем стандарта, совместимого со стандартом компании, у которой был приобретен радиотелефон;
  • наличие соответствующих организационных и экономических соглашений о роуминговом обслуживании абонентов;
  • наличие каналов связи между системами, обеспечивающих передачу звуковой, сигнальной и другой информации для роуминговых абонентов.

При организации роуминга недостаточно провести только технические мероприятия  по соединению различных сетей сотовой  связи. Очень важно еще решить проблему взаиморасчетов между операторами  этих сетей.

Кроме того, для организации передачи сигнальных сообщений при автоматическом роуминге нужно создать соответствующие  сигнальные каналы и программное  обеспечение. Это требует определенных затрат. Поэтому между областями  обслуживания различных операторов должна быть большая потребность  в обслуживании роуминговой связи — больше, чем просто трафик от "случайно заехавших" абонентов.

 Протоколы взаимодействия оборудования  GSM

Управление радиоресурсами (RRM — Radio Resources Management) управляет установкой, обслуживанием и оконечным устройством, радио- и фиксированными каналами, включая хэндовер.

Управление передвижением (MM — Mobility Management) управляет обновлением местоположения и процедурами регистрации, так же как защитой и аутентификацией.

Управление соединением (Connection Management) обрабатывает общий процесс управления установлением соединения и сигнализацией и управляет дополнительными услугами, а также службой передачи коротких сообщений.

При взаимодействии базовой телефонной станцией (BTS) и  контроллером базовой станции (BSC) используется интерфейсный протокол сообщение трансивера (приемопередатчика) базовой станции (BTSM — Base Transceiver Station Message). он также называется интерфейс Abis.

Передача сигналов между  различными объектами в фиксированной  части сети (интерфейс A) использует протоколы на уровне 1 MTP1 (Message Transfer Part — подсистема передачи сообщений) на уровне 1 и на уровне 2 — SCCP (Signaling Connection Control Part — система управления соединением каналов сигнализации), принадлежащие системе сигнализации ОКС № 7. На уровне 3 применяют перечисленные выше

Подсистема 3 уровня BSSMAP протоколы GSM — MM и CM.прикладная система управления базовой станцией предназначена для связи контроллера базовой станции (BSS) с центром коммутации мобильной связи (MSC).

Система управления соединением канала сигнализации (SCCP — Signaling Connection Control Part) управляет логическими соединениями в сети ОКС для передачи блоков данных сигнализации. Она выполняет функции третьего уровня (сетевой уровень) модели взаимодействия протоколов ОКС. SCCP предоставляет возможность осуществлять по сети ОКС передачу данных для управления соединением и при техническом обслуживании, непосредственно не связанную с конкретным каналом речи или передачи данных.

Подсистема SCCP предоставляет  два класса услуг: ориентированных  на соединение и не ориентированных  на соединение.

В первом случае перед началом  обмена данными устанавливается  соединение. Доставка сообщений может  быть гарантирована в порядке  их передачи. Для ориентированных  на соединение услуг различаются  постоянные и кратковременные (полупостоянные) соединения для сигнализации. При  этом для полупостоянных соединений предусмотрены три фазы: фаза установления соединения (примитив "N – соединение"), фаза обмена данными (примитив "N –  данные") и фаза освобождение соединения (примитив "N – разъединение").

При реализации услуг, не ориентированных  на соединение, SCCP обеспечивает передачу данных в двух режимах: с контролем  последовательности доставки сообщений  и без контроля. В последнем  случае не гарантируется прием данных в порядке их передачи, так как  они маршрутизируются в сети сигнализации по-разному и могут быть повторно запрошены при воздействии помех.

Прикладная часть системы  базовой станции BSSAP

Информация о работе Аутентификация в GSM. Механизмы обеспечения безопасности