АСУ ТП процессом спікання агломераційної шихти в умовах аглофабрики ВАТ ММК ім. Ілліча

Автор: Пользователь скрыл имя, 11 Июня 2013 в 19:05, курсовая работа

Описание работы

Целью данного дипломного проекта является разработка современной АСУ ТП процессом спекания шихты аглофабрики ОАО «ММК им.Ильича» с использованием технических средств на базе программируемых микроконтроллеров и персональных компьютеров (рабочих станций). Разработка структурной, функциональной схем и на их основе принципиально-электрической и монтажно-коммутационной, проектирование щитов КИПиА. Разработка модели спекания агломерационной шихты на агломашине и исследование влияния различных параметров на процесс спекания. Рассматриваются также вопросы по гражданской обороне, охране труда и технико-экономической эффективности.

Содержание

стр.
Введение . . . . . . . . . . . 7
1 Литературный обзор существующих систем управления
процессом спекания агломерата . . . . . . . 9
2 Описание технологического процесса . . . . . . 14
2.1 Производственные операции, осуществляемые на аглофабрике . 14
2.2 Характеристика и конструкция агломашины . . . . 20
2.3 Процесс спекания агломерата на агломашине . . . . 21
3 Процесс спекания – как объект автоматического управления . . 24
3.1 Задачи управления процессом спекания . . . . . 29
4 Структура АСУТП процессом спекания на аглофабрике . . . 31
4.1 Обоснование выбора АСУТП . . . . . . . 31
4.2 Описание, выбранной системы АСУ . . . . . 31
5 Функциональная схема АСУ ТП . . . . . . . 35
6 Специальная часть диплома . . . . . . . . 41
6.1 Разработка контура регулирования температуры в зажигательном
горне . . . . . . . . . . . 41
6.2 Разработка контура регулирования законченностью процесса
спекания . . . . . . . . . . 42
6.3 Разработка контура регулирования соотношением «топливо-воздух» 42
6.4 Проектирование принципиальной электрической схемы контура
регулирования соотношением «топливо-воздух» . . . 43
6.5 Проектирование щита КИПиА контура регулирования
соотношением «топливо-воздух» . . . . . . 44
6.6 Проектирование монтажно-коммутационной схемы контура
соотношением «топливо-воздух» . . . . . . 45
6.7 Математическая модель . . . . . . . 45
6.7.1 Разработка детерминированной математической модели . 45
6.7.2 Выбор входных и выходных параметров . . . . 52
7 Охрана труда . . . . . . . . . . 53
7.1 Расчет воздухообмена в помещении отдела АСУ ТП участка
спекания аглофабрики . . . . . . . . 54
7.2 Расчет искусственного освещения помещения отдела АСУ ТП . 56
7.3 Расчет защитного зануления корпуса электроустановки . . 60
7.4 Пожарная безопасность помещения отдела АСУ ТП . . . 62

8 Гражданская оборона . . . . . . . . .
8.1 Основные положения . . . . . . . .
8.2 Задание . . . . . . . . . .
8.3 Исследование радиационной обстановки на объекте . . .
8.4 Мероприятия по повышению устойчивости работы аглофабрики
при радиоактивном заражении . . . . . . .
9 Организация производства . . . . . . . .
9.1 Организация и планирование работ по текущей эксплуатации
и ремонту средств автоматизации . . . . . .
9.2 Расчет годового фонда времени рабочих . . . . .
9.3 Определение штата слесарей, обслуживающих систему контроля
и автоматического регулирования . . . . . .
9.4 Организация ремонтных работ и работ по поверке приборов .
9.5 Расчет капитальных затрат, связанных с внедрением АСУ ТП .
9.6 Затраты на материалы и запчасти . . . . . .
9.7 Расчет фонда заработной платы . . . . . .
9.8 Затраты на текущий ремонт КИП и А . . . . .
9.9 Прочие цеховые расходы . . . . . . .
9.10 Амортизационные отчисления . . . . . .
9.11 Энергетические затраты . . . . . . .
9.12 Экономическая эффективность предлагаемой системы
автоматизации . . . . . . . . .
9.13 Технико-экономические показатели . . . . .
Заключение . . . . . . . . . . .

Работа содержит 1 файл

DD.doc

— 841.50 Кб (Скачать)

Аварийная сигнализация агломашины осуществляется следующим образом: при падении  разрежения в коллекторе спекания или  давления природного газа, воздуха  при подаче в горн ниже допустимого, происходит звуковая сигнализация при переключении кнопочно переключателя КЕ-011 на звонок МЗ-1, либо световая сигнализация, при переключении на световое табло ТСМ.

Далее приводятся основные параметры выбранных модулей  микроконтроллера Simatic S7-300.

Блок питания PS 307 1В сконструирован для подключения к линейному напряжению 120/230 В переменного тока и снабжает вторичную сторону напряжением 5 В постоянного тока  4 А и 24 В постоянного тока 0,5 А.

Входное напряжение:

- номинальное значение  ~120/230 В;

- допустимые диапазоны  от 85 до 132 В от 170 до 264 В.

частота питающей сети:

- номинальное значение  50/60 Гц;

- допустимый диапазон  от 47 до 63 Гц.

- при 120 В перем.  тока  0,55 А;

- при 230 В перем.  тока  0,31 А.

Выходные напряжения:

- номинальное значение  5,1 В / 24 В;

- допустимые диапазоны  5 В: +2% / -0,5%; 24 В: ±5%;

Выходные токи   5 В: 4 А; 24 В: 0,5 А.

Блок питания PS 307 1Е сконструирован для подключения к линейному напряжению 120/230 В переменного тока и снабжает вторичную сторону напряжением 5 В постоянного тока 10 А и 24 В постоянного тока 1 А.

Входное напряжение:

- номинальное значение  ~120/230 В;

- допустимые диапазоны  от 85 до 132 В от 170 до 264 В.

частота питающей сети:

- номинальное значение  50/60 Гц;

- допустимый диапазон  от 47 до 63 Гц.

Номинальный входной  ток:

- при 120 В     1,14 А;

- при 230 В     0,57 А.

 

Выходные напряжения:

- номинальное значение  5,1 В / 24 В;

- допустимые диапазоны  5 В: +2% / -0,5%; 24 В: ±5%;

Выходные токи   5 В: 10 А; 24 В: 1,0 А.

 

Таблица 5.2 – Технические  характеристики CPU 315-2DP

Процессор

Pentium 120 МГц

Возможность расширения памяти

16 Мбайт

Напряжение питания

3,3 В

Кэш второго уровня

250 Кбайт

Номинальное напряжение

5 В пост. тока  (от 4,75 до 5,25 В пост.тока)

Типовое потребление  тока

3,0 А

Максимально допустимое потребление тока

3,5А

Максимально допустимые потери мощности

17,5 Вт

Максимально допустимые потери мощности с интерфейсными  субмодулями

20,5 Вт

Рабочая память

0,8 Мбайт или 1,6 Мбайт  (встроенная)

Загрузочная память

16 Кбайт (встроенная)

Размер отображения процесса, входы и выходы

512 байт

Область адресов входов/выходов

16 Кбайт

Цифровые входы/выходы

Аналоговые входы/выходы

131072

8192


 

Таблица 5.3 – Технические  характеристики интерфейсных модулей          IM 153-1

Потребление тока из шины S7-300 5 В пост.тока IM 153-1

Тип. 100 мА

Макс. 120 мА

Потери энергии IM 153-1

Тип. 500 мВт

Макс. 600 мВт

Источник питания для  устройства расширения

5 В / 5 А на цепь


 

Повторитель RS 485 усиливает сигналы данных на линиях шины и связывает шинные сегменты между собой.

 

 

Таблица 5.4 – Технические  данные повторителя R 485

Источник питания:

  • номинальное напряжение
  • пульсация

 

24 В пост.тока

от 18 пост.тока до 30 пост.тока

Потребление тока при  номинальном напряжении:

  • без нагрузки в разъеме PG/OP
  • нагрузка в разъеме PG/OP (5В/90мА)
  • нагрузка в разъеме PG/OP (24В/100мА)

 

 

100 мА

130 мА

200 мА

Скорость передачи

от 9,6 кбит/с до 12 Мбит/с


 

Таблица 5.5 – Технические  данные памяти

Наименование

Потребление тока при 5 В

Токи при буферизации

МС 952 / 64 Кбайт / RAM

тип. 20 мА

макс. 50 мА

тип. 0,5 мкА

макс. 20 мкА

MC 952 / 64 Кбайт / 5 В флэш

тип. 15 мА

макс. 35 мА

-


 

Таблица 5.6 – Модуль ввода  дискретных сигналов SM 321 (16 входов)

Количество входов, которые  могут управляться одновременно

16

Потребление тока и шины S7-400 (5 В пост.тока)

макс. 150 мА

тип. 100 мА

Данные для выбора датчика

Входное напряжение

Номинальное значение

 

от 24 до 60 VUC

Для сигнала «1»

от 15 до 72 VDC

от –15 до –72 VDC

от 15 до 60 VAC

Для сигнала «0»

от –6 до +6 VDC

от 0 до 5 VAC

Диапазон частот для сигналов переменного тока

от 47 до 63 Гц

Входной ток при сигнале  «1»

от 4 до 10 мА


 

Таблица 5.7 – Модуль ввода  аналоговых сигналов SM 331 (8 входов)

Диапазон измерения  напряжения

± 80 мВ,± 250 мВ,± 500 мВ,

± 1 В, ± 2,5 В, ± 5 В, ± 10 В,

от 1 до 5 В

Диапазон измерения тока для 4-х проводных преобразователей

от 0 до 20 мА, от 4 до 20 мА,

± 20 мА

Диапазон измерения  тока для 2-х проводных преобразователей

от 4 до 20 мА


 

Модуль аналогового  вывода SM 332:

  • 4 выходов;
  • разрешающая способность 13 бит;
  • выходные диапазоны для напряжения;
  • выходные диапазоны для тока;
  • напряжение питания: 24 В пост.тока.

 

Таблица 5.8 – Модуль аналогового  вывода SM 332

Выходной диапазон (номинальные  значения)

± 10 В

от 0 до 10 В

от 1 до 5 В

± 20 мА

от 0 до 20 мА

от 4 до 20 мА


 

Модуль с релейным выходом SM 332:

  • 8 выходов;
  • номинальное выходное напряжение: до 230 В перем.тока / 125 В пост. тока

 

Таблица 5.9 – Модуль аналогового  вывода SM 332

Номинальное напряжение на L+

Допустимый диапазон

от 5 до 264 В перем. тока

от 5 до 125 В пост.тока

Суммарный ток выходов (на группу)

до 40˚С

до 60 ˚С

Без вент. / с вентил.

10 А / 10 А

5 А / 10 А

Допустимая разность потенциалов

между группами

на стороне процесса/стороне  управления

 

500 В перем.тока

1500 перем.тока

Тип контакта

Вид А

Сопротивление контакта

Макс. 100 Ом

Минимальный ток нагрузки

10 мА

Потери мощности модуля

тип. 4,5 Вт, макс. 25 Вт


 

В качестве ЭВМ выбран Pentium III-650, 17’’ SVGA, 128 Mb, который прошел промышленное испытание. Для вывода на печать данных выбран широкоформатный принтер Epson FX-1880.

 

 

 

 

6 СПЕЦИАльная часть  диплома

 

В специальной части  диплома разрабатываются основные контуры по регулированию процессом спекания аглошихты на агломашине. Проектируется контур управления процессом зажигания в горне, так как от температуры в зоне горения зависит качество спекания шихты. При рассмотрении технологии производства было выяснено, что скорость движения ленты на машине оказывает существенное влияние на законченность процесса спекания. Поэтому, разработан контур по регулированию скорости агломашины или законченностью спекания. На горение оказывает влияние также и расход природного газа и воздуха. Учитывая это, разработан контур по регулированию соотношения «топливо-воздух», который также является немаловажным по своей значимости в процессе спекания.

 

6.1 Разработка  контура регулирования температуры

 в зажигательном  горне

 

Основной контур в  системе автоматизации - контур контроля и регулирования температуры в зажигательном горне. Рассмотрим его работу подробнее.

Измерение температуры осуществляется первичным пирометрическим преобразователем ППТ-121 (поз.1-1), с которого сигнал поступает на вторичный измерительный преобразователь ПВ-0 (поз.1-2), который выдает стандартный сигнал 0-5 мА на вторичный регистрирующий прибор Диск-250-1121 (поз.1-3) и на микроконтроллер Symatic S7-300. С микроконтроллера сигнал поступает в ЭВМ. После обработки поступившего сигнала в соответствии с заданным алгоритмом ЭВМ вырабатывает задание для микроконтроллера, при этом в системе предусмотрен переключатель ПМОФ-45 (поз.1-5), позволяющий подавать задание на микроконтроллер либо с ручного задатчика РЗД-22 (поз.  1-4), либо с ЭВМ. Заданное значение индуцируется миллиамперметром М1730 (поз.1-6) и поступает на вход микроконтроллера. На основании полученного задания микроконтроллер вырабатывает управляющее воздействие, которое с выхода микроконтроллера поступает на БРУ-32 (поз.1-7), затем на пускатель ФЦ-0611 (поз.1-8) и на исполнительный механизм МЭО-250/63 (поз.1-9), который управляет клапаном подачи природного газа в горн (поз.1-10). Кроме того на микроконтроллер заводится сигнал о положении регулирующего органа. Регулирование можно осуществлять в трех режимах: автоматическом режиме – когда заданное значение поступает с ЭВМ; режиме локальной автоматики – когда заданное значение поступает с задатчика, если ЭВМ выйдет из строя или с ней будет нарушена связь; режиме ручного управления – когда микроконтроллер выходит из строя и управляющее воздействие подается с помощью блока ручного управления.

 

    1.  Разработка контура регулирования законченностью

процесса спекания

 

Не менее важным является контур автоматического контроля и  регулирования законченностью процесса спекания на агломашине. Он состоит из термоэлектрических преобразователей ТХК-1087 установленных в вакуум-камерах №16-21, 31 (поз.10-1,…13-1), с которых сигнал поступает на 12-ти канальный регистрирующий и показывающий прибор ФЩЛ 501 (поз.7-2) и на микроконтроллер Symatic S7-300. С микроконтроллера сигнал поступает в ЭВМ. После обработки поступившего сигнала в соответствии с заданным алгоритмом ЭВМ вырабатывает задание для микроконтроллера, при этом в системе предусмотрен переключатель ПМОФ-45 (поз.7-4), позволяющий подавать задание на микроконтроллер либо с ручного задатчика РЗД-22 (поз.7-3), либо с ЭВМ. Заданное значение индуцируется миллиамперметром М1730 (поз.7-5) и поступает на вход микроконтроллера. На основании полученного задания микроконтроллер вырабатывает управляющее воздействие, которое с выхода микроконтроллера поступает на БРУ-32 (поз.7-6), затем на тиристорный усилитель ФЦ-0611 (поз.7-7). Дальнейшее управление осуществляется согласно электрическим схемам управления электродвигателем.  Регулирование можно осуществлять в трех режимах: автоматическом режиме – когда заданное значение поступает с ЭВМ; режиме локальной автоматики – когда заданное значение поступает с задатчика, если ЭВМ выйдет из строя или с ней будет нарушена связь; режиме ручного управления – когда микроконтроллер выходит из строя и управляющее воздействие подается с помощью блока ручного управления.

 

    1.  Разработка контура регулирования соотношением

«топливо-воздух»

 

Важным параметром, влияющим на процесс спекания, является расход воздуха и природного газа на горение, поэтому проектируется контур автоматического контроля и регулирования соотношением топливо-воздух. Он состоит из двух стандартных комплектов для измерения расхода методом переменного перепада – диафрагмы, преобразователя разности давлений «САПФИР-22М-ДД» (поз.24-2, 26-2) и блока извлечения корня БИК (поз.24-3, 26-3). Комплекты установлены на трубопроводах воздуха и природного газа. Сигналы поступают на вторичные регистрирующие приборы Диск-250-1121 (поз.24-4, 26-4) и на микроконтроллер Symatic S7-300. С микроконтроллера сигнал поступает в ЭВМ. После обработки поступившего сигнала в соответствии с заданным алгоритмом ЭВМ вырабатывает задание для микроконтроллера, при этом в системе предусмотрен переключатель ПМОФ-45 (поз.26-6), позволяющий подавать задание на микроконтроллер либо с ручного задатчика РЗД-22 (поз.26-5), либо с ЭВМ. Заданное значение индуцируется миллиамперметром М1730 (поз.26-7) и поступает на вход микроконтроллера. На основании полученного задания микроконтроллер вырабатывает управляющее воздействие, которое с выхода микроконтроллера поступает на БРУ-32 (поз.26-8), затем на пускатель ФЦ-0611 (поз.26-9) и на исполнительный механизм МЭО-250/63 (поз.26-10), который управляет клапаном подачи природного газа в горн. Кроме того на микроконтроллер заводится сигнал о положении регулирующего органа. Регулирование можно осуществлять в трех режимах: автоматическом режиме – когда заданное значение поступает с ЭВМ; режиме локальной автоматики – когда заданное значение поступает с задатчика, если ЭВМ выйдет из строя или с ней будет нарушена связь; режиме ручного управления – когда микроконтроллер выходит из строя и управляющее воздействие подается с помощью блока ручного управления.

 

    1.  Проектирование принципиальной электрической схемы контура                     регулирования соотношением «топливо-воздух»

 

Принципиальная электрическая  схема – это схемная реализация отдельных контуров функциональной схемы автоматизации. В этой схеме описывается полный состав всех приборов и технических средств, которые входят в данный контур, а также все линии связи между ними.

Принципиальная электрическая схема является одной из наиболее важных схем для работников службы КИПиА, а также других служб связанных с обслуживанием агрегата.

В схеме используются стандартные по ГОСТ приборы, которые  работают на стандартных сигналах, что облегчает настройку и  ремонт, поверку, наладку и т.д.

Информация о работе АСУ ТП процессом спікання агломераційної шихти в умовах аглофабрики ВАТ ММК ім. Ілліча