Автор: Пользователь скрыл имя, 20 Января 2011 в 12:43, лекция
Несмотря на тот факт, что в наши дни уже практически никто не разрабатыва¬ет операционные системы (естественно, за исключением нескольких известных компаний, специализирующихся на этом направлении, кстати, одном из слож¬нейших) и все являются пользователями наиболее распространенных систем, мы все-таки рассмотрим кратко вопросы архитектуры ОС. Сделать это необхо¬димо потому, что многие возможности и характеристики ОС определяются в значительной мере ее архитектурой.
Одним
из средств обеспечения
Принцип открытой и наращиваемой ОС
Открытая ОС доступна для анализа как пользователям, так и системным специалистам, обслуживающим вычислительную систему. Наращиваемая (модифицируемая, развиваемая) ОС позволяет не только использовать возможности генерации, но и вводить в ее состав новые модули, совершенствовать существующие и т. д. Другими словами, необходимо, чтобы можно было легко внести дополнения и изменения, если это потребуется, и не нарушить целостность системы. Прекрасные возможности для расширения предоставляет подход к структурированию ОС по типу клиент—сервер с использованием микроядерной технологии. В соответствии с этим подходом ОС строится как совокупность привилегированной управляющей программы и набора непривилегированных услуг — «серверов». Основная часть ОС остается неизменной и в то же время могут быть добавлены новые серверы или улучшены старые.
Этот принцип иногда трактуют как расширяемость системы. К открытым ОС, прежде всего, следует отнести UNIX-системы и, естественно, ОС Linux.
Принцип мобильности (переносимости)
Операционная система относительно легко должна переноситься с процессора одного типа на процессор другого типа и с аппаратной платформы (которая включает наряду с типом процессора и способ организации всей аппаратуры компьютера, иначе говоря, архитектуру вычислительной системы) одного типа на аппаратную платформу другого типа. Заметим, что принцип переносимости очень близок принципу совместимости, хотя это и не одно и то же.
Написание переносимой ОС аналогично написанию любого переносимого кода — нужно следовать некоторым правилам. Во-первых, большая часть ОС должна быть написана на языке, который имеется на всех системах, на которые планируется в дальнейшем ее переносить. Это, прежде всего, означает, что ОС должна быть написана на языке высокого уровня, предпочтительно стандартизованном, например на языке С. Программа, написанная на ассемблере, не является в общем случае переносимой. Во-вторых, важно минимизировать или, если возможно, исключить те части кода, которые непосредственно взаимодействуют с аппаратными средствами. Зависимость от аппаратуры может иметь много форм. Некоторые очевидные формы зависимости включают прямое манипулирование регистрами и другими аппаратными средствами. Наконец, если аппаратно-зависимый код не может быть полностью исключен, то он должен быть изолирован в нескольких хорошо локализуемых модулях. Аппаратно-зависимый код не должен быть распределен по всей системе. Например, можно спрятать аппаратно-зависимую структуру в программно задаваемые данные абстрактного типа. Другие модули системы будут работать с этими данными, а не с аппаратурой, используя набор некоторых функций. Когда ОС переносится, то изменяются только эти данные и функции, которые ими манипулируют.
Введение стандартов POSIX преследовало цель обеспечить переносимость создаваемого программного обеспечения.
Принцип обеспечения безопасности вычислений
Обеспечение безопасности при выполнении вычислений является желательным свойством для любой многопользовательской системы. Правила безопасности определяют такие свойства, как защита ресурсов одного пользователя от других и установление квот по ресурсам для предотвращения захвата одним пользователем всех системных ресурсов (таких, как память).
Обеспечение защиты информации от несанкционированного доступа является обязательной функцией сетевых операционных систем. Во многих современных ОС гарантируется степень безопасности данных, соответствующая уровню С2 в системе стандартов США. Основы стандартов в области безопасности были заложены в документе «Критерии оценки надежных компьютерных систем». Этот Документ, изданный Национальным центром компьютерной безопасности (NCSC — National Computer Security Center) в США в 1983 году, часто называют Оранжевой книгой.
В соответствии с требованиями Оранжевой книги безопасной считается система, которая «посредством специальных механизмов защиты контролирует доступ к информации таким образом, что только имеющие соответствующие полномочия лица или процессы, выполняющиеся от их имени, могут получить доступ на чтение, запись, создание или удаление информации».
Иерархия уровней безопасности, приведенная в Оранжевой книге, помечает низший уровень безопасности как D, а высший — как А.
В класс D попадают системы, оценка которых выявила их несоответствие требованиям всех других классов.
Основными свойствами, характерными для систем класса С, являются наличие подсистемы учета событий, связанных с безопасностью, и избирательный контроль доступа. Класс (уровень) С делится на 2 подуровня: уровень С1, обеспечивающий защиту данных от ошибок пользователей, но не от действий злоумышленников; и более строгий уровень С2. На уровне С2 должны присутствовать:
- средства секретного входа, обеспечивающие идентификацию пользователей путем ввода уникального имени и пароля перед тем, как им будет разрешен доступ к системе;
- избирательный контроль доступа, позволяющий владельцу ресурса определить, кто имеет доступ к ресурсу и что он может с ним делать. Владелец делает это путем предоставляемых прав доступа пользователю или группе пользователей;
- средства учета и наблюдения (auditing), обеспечивающие возможность обнаружить и зафиксировать важные события, связанные с безопасностью, или любые попытки создать, получить доступ или удалить системные ресурсы;
- защита
памяти, заключающаяся в том, что
память инициализируется перед
тем, как повторно
На этом уровне система не защищена от ошибок пользователя, но поведение его может быть проконтролировано по записям в журнале, оставленным средствами наблюдения и аудита.
Системы уровня В основаны на помеченных данных и распределении пользователей по категориям, то есть реализуют мандатный контроль доступа. Каждому пользователю присваивается рейтинг защиты, и он может получать доступ к данным только в соответствии с этим рейтингом. Этот уровень в отличие от уровня С защищает систему от ошибочного поведения пользователя.
Уровень А является самым высоким уровнем безопасности, он требует в дополнение ко всем требованиям уровня В выполнения формального, математически обоснованного доказательства соответствия системы требованиям безопасности.
Различные
коммерческие структуры (например, банки)
особо выделяют необходимость учетной
службы, аналогичной той, что предлагают
государственные рекомендации С2. Любая
деятельность, связанная с безопасностью,
может быть отслежена и тем самым учтена.
Это как раз то, чего требует стандарт
для систем класса С2, и что обычно нужно
банкам. Однако коммерческие пользователи,
как правило, не хотят расплачиваться
производительностью за повышенный уровень
безопасности. А-уровень безопасности
занимает своими управляющими механизмами
до 90 % процессорного времени, что, безусловно,
в большинстве случаев уже неприемлемо.
Более безопасные системы не только снижают
эффективность, но и существенно ограничивают
число доступных прикладных пакетов, которые
соответствующим образом могут выполняться
в подобной системе. Например, для ОС Solaris
(версия UNIX) есть несколько тысяч приложений,
а для ее аналога В-уровня — только около
ста.
Микроядерные операционные системы
Микроядро — это минимальная стержневая часть операционной системы, служащая основой модульных и переносимых расширений. Существует мнение, что большинство операционных систем следующих поколений будут обладать микроядрами. Однако имеется масса разных мнений по поводу того, как следует организовывать службы операционной системы по отношению к микроядру: как проектировать драйверы устройств, чтобы добиться наибольшей эффективности, но сохранить функции драйверов максимально независимыми от аппаратуры; следует ли выполнять операции, не относящиеся к ядру, в пространстве ядра или в пространстве пользователя; стоит ли сохранять программы имеющихся подсистем (например, UNIX) или лучше отбросить все и начать с нуля.
Основная идея, заложенная в технологию микроядра, будь то собственно ОС или ее графический интерфейс, заключается в том, чтобы конструировать необходимую среду верхнего уровня, из которой можно легко получить доступ ко всем функциональным возможностям уровня аппаратного обеспечения. При такой структуре ядро служит стартовой точкой для создания системы. Искусство разработки микроядра заключается в выборе базовых примитивов, которые должны в нем находиться для обеспечения необходимого и достаточного сервиса. В микроядре содержится и исполняется минимальное количество кода, необходимое для реализации основных системных вызовов. В число этих вызовов входят передача сообщений и организация другого общения между внешними по отношению к микроядру процессами, поддержка управления прерываниями, а также ряд некоторых других функций. Остальные функции, характерные для «обычных» (не микроядерных) ОС, обеспечиваются как модульные дополнения-процессы, взаимодействующие главным образом между собой и осуществляющие взаимодействие посредством передачи сообщений.
Микроядро является маленьким, передающим сообщения модулем системного программного обеспечения, работающим в наиболее приоритетном состоянии компьютера и поддерживающим остальную часть операционной системы, рассматриваемую как набор серверных приложений. Интерес к микроядрам возрастал по мере того, как системные разработчики реагировали на сложность современных реализаций операционных систем, и поддержан тем, что исследовательское сообщество успешно продемонстрировало реализуемость концепции микроядра.
Созданная в университете Карнеги Меллон технология микроядра Mach служит основой для многих ОС.
Исполняемые микроядром функции ограничены в целях сокращения его размеров и максимизации количества кода, работающего как прикладная программа.
Микроядро
включает только те функции, которые
требуются для определения
- управление виртуальной памятью;
- задания и потоки;
- межпроцессные коммуникации (IPC) (IPC (inter-process communication) — межпроцессные коммуникации. Host — главный компьютер. Сейчас этим термином обозначают любой компьютер, имеющий IP-адрес.);
- управление
поддержкой ввода/вывода и
- сервисы набора хоста2 и процессора.
Другие подсистемы и функции операционной системы, такие как системы управления файлами, поддержка внешних устройств и традиционные программные интерфейсы, размещаются в одном или более системных сервисах либо в задаче операционной системы. Эти программы работают как приложения микроядра.
Следуя
концепции множественных
Благодаря своим размерам и способности поддерживать стандартные сервисы программирования и характеристики в виде прикладных программ сами микроядра проще, чем ядра монолитных или модульных операционных систем. С микроядром функция операционной системы разбивается на модульные части, которые могут быть сконфигурированы целым рядом способов, позволяя строить большие системы добавлением частей к меньшим. Например, каждый аппарат-но-независимый нейтральный сервис логически отделен и может быть сконфигурирован в широком диапазоне способов. Микроядра также облегчают поддержку мультипроцессоров созданием стандартной программной среды, которая может использовать множественные процессоры в случае их наличия, однако не требует их, если их нет. Специализированный код для мультипроцессоров ограничен самим микроядром. Более того, сети из общающихся между собой микроядер могут быть использованы для обеспечения операционной системной поддержки возникающего класса массивно параллельных машин. В некоторых случаях определенной сложностью использования микроядерного подхода на практике является замедление скорости выполнения системных вызовов при передаче сообщений через микроядро по сравнению с классическим подходом. С другой стороны, можно констатировать и обратное. Поскольку микроядра малы и имеют сравнительно мало требуемого к исполнению кода уровня ядра, они обеспечивают удобный способ поддержки характеристик реального времени, требующихся для мультимедиа, управления устройствами и высокоскоростных коммуникаций. Наконец, хорошо структурированные микроядра обеспечивают изолирующий слой для аппаратных различий, которые не маскируются применением языков программирования высокого уровня. Таким образом, они упрощают перенесение кода и увеличивают уровень его повторного использования.
Информация о работе Архитектура операционных систем и интерфейсы прикладного программирования