Производство стали, Бессемер и Мартен

Автор: Пользователь скрыл имя, 25 Марта 2012 в 18:38, реферат

Описание работы

Реферат подготовлен по предмету "История науки и техники", за работу получено отлично.

Содержание

1. Введение……………………………….………………………….…….…….3
2. Производство стали, Бессемер и Мартен.……………………………..…..4
3. Список использованной литературы………………………………….…..11

Работа содержит 1 файл

Производство стали, Бессемер и Мартен !!!.doc

— 174.00 Кб (Скачать)


Министерство образования и науки Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный индустриальный университет»

(ФГБОУ ВПО «МГИУ»)

 

 

 

 

 

 

 

 

 

 

 

 

История науки и техники

 

Реферат

 

на тему «Производство стали, Бессемер и Мартен»

 

 

 

 

 

 

 

 

Москва 2012

 

Содержание

1.    Введение……………………………….………………………….…….…….3

2.     Производство стали, Бессемер и Мартен.……………………………..…..4

3.    Список использованной литературы………………………………….…..11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

Искусство получения железа из Греции распространилось в Центральную и Западную Европу, где ранний железный век относят к VII-V в. до н.э., а наиболее широкое распространение железа - к V-I в. до н.э. Первые сыродутные печи обнаружены в нынешней Австрии. Археологи их относят к периоду 1000 - 4560 г. до н.э. Большой вклад в распространение железа в Европе в латинский период (V-I в. до н.э) внесли кельтские народы, овладевшие передовой по тому времени технологией получения железа. Расселившись по Европе в конце прошлой и начале нашей эры, кельты заняли территории современной Франции, Германии, Англии, Польши и др. Кельтское название железа "изарнон" перешло в современный немецкий ("айзен") и английский ("айрон") языки. Помимо сельскохозяйственных орудий, кельтские кузнецы с большим искусством изготовляли оружие, закаливали его, мастерски украшая травлением, чеканкой, насечкой. Это оружие высоко ценилось германцами и римлянами.

В средние века горн уже обрел вид шахтной печи, достигавшей в высоту нескольких метров. Теперь печи «дышали» с помощью энергии воды - воздуходувные мехи  приводились в движение сначала специальными водяными трубами, а позже огромными водяными колесами.

Процесс в шахтной печи происходит при больших температурах. Именно это привело к тому, что вместо требуемой железной крицы из печи вытекал чугун, Позже заметили, что при повторном переплаве чугуна получалась желанная сталь. Так возник двухстадийный процесс получения стали.

 

 

2. Производство стали, Бессемер и Мартен.

До конца XVIII- начала XIX века в процессе получения стали больших сдвигов не происходило. Промышленных способов, позволяющих в больших объемах получать сталь еще не было. До конца XVIII века передел чугуна в мягкое железо происходил только в кричных горнах. Этот способ, однако, был неудобен во многих отношениях. Получавшийся в ходе него металл был неоднородным - местами приближался по своим качествам к ковкому железу, местами - к стали. Кроме того, работа требовала больших затрат времени и физических сил.

Значительным шагом вперед на этом пути стал предложенный в 1784 году англичанином Кортом процесс пудлингования в специально созданной для этого печи. Важное отличие пудлинговой печи от кричного горна заключалось в том, что она допускала использовать в качестве горючего любое топливо, в том числе и дешевый неочищенный каменный уголь, а объем ее был значительно больше. Благодаря пудлинговым печам железо стало дешевле. Вместе с тем в отличие от кричных горнов печь Корта не требовала принудительного вдувания. Доступ воздуха и хорошая тяга достигались благодаря высокой трубе. Это была одна из причин, почему пудлинговые печи получили широкое распространение во всем мире.

Пудлингование было очень тяжелым и трудоемким процессом. Работа шла при нем таким образом. На подину пламенной печи загружались чушки чугуна, их расплавляли. По мере выгорания углерода и других примесей температура плавления металла повышалась, и из жидкого расплава начинали "вымораживаться" кристаллы довольно чистого железа. На "подине" собирался комок слипшейся тестообразной массы. Рабочие-пудлинговщики приступали в операции накатывания крицы. Перемешивая металл ломом, они старались собрать вокруг него комок (крицу) железа. Такой комок весил до 50-80 килограммов и более. Крицу вытаскивали из печи и подавали сразу под молот для проковки, чтобы удалить частицы шлака и уплотнить металл.

Многие изобретатели думали над тем, как заменить пудлингование более совершенным способом восстановления железа. Раньше других эту задачу удалось разрешить английскому инженеру Бессемеру. В 1856 году Бессемер публично демонстрировал изобретенный им неподвижный конвертер. Конвертер имел вид невысокой вертикальной печки, закрытой сверху сводом с отверстием для выхода газов. Сбоку в печи было второе отверстие для заливки чугуна. Готовую сталь выпускали через отверстие в нижней части печи (во время работы конвертера его забивали глиной). Воздуходувные трубки (фурмы) находились возле самого пода печи. Так как конвертер был неподвижным, продувку начинали раньше, чем вливали чугун (в противном случае металл залил бы фурмы. По той же причине надо было вести продувку до тех пор, пока весь металл не был выпущен. Весь процесс длился не более 20 минут. Малейшая задержка в выпуске давала брак. Это

 

 

 

 

 

 

Рис. 1 Развитие Бессемеровского процесса

неудобство, а также ряд других недостатков неподвижного конвертера заставили Бессемера перейти к вращающейся печи. В 1860 году он взял патент на новую конструкцию конвертера, сохранившуюся в общих чертах до наших дней. Способ Бессемера был настоящей революцией в области металлургии. За 8-10 минут его конвертер превращал 10-15 т чугуна в ковкое железо или сталь, на что прежде потребовалось бы несколько дней работы пудлинговой печи или несколько месяцев работы прежнего кричного горна. Однако, после того как бессемеров метод стал применяться в промышленных условиях, результаты его оказались хуже, чем в лаборатории, и сталь выходила очень низкого качества. Два года Бессемер пытался разрешить эту проблему и наконец, выяснил, что в его опытах чугун содержал мало фосфора, в то время как в Англии широко использовался чугун, выплавленный из железных руд с высоким содержанием фосфора. Между тем фосфор и сера не выгорали вместе с другими примесями; из чугуна они попадали в сталь и существенно снижали ее качество. Это, а кроме того высокая стоимость конвертера, привело к тому, что бессемеровский способ очень медленно внедрялся в производство. И 15 лет спустя в Англии большая часть чугуна переплавлялись в пудлинговых печах. Гораздо более широкое применение конверторы получили в Германии и США.

Рис. 2. Бессемеровский конвертер: 1 — корпус; 2 — пустотелая цапфа; 3 — патрубок; 4 — воздушная коробка; 5 — редуктор; 6 — днище; 7 — фурмы; 8 — горловина.

Наряду с бессемеровским способом производства стали вскоре огромную роль приобрел другой способ получения литой стали - на поду пламенной регенеративной печи. Идея получать литую сталь на поду впервые была высказана еще в 1722 году Реомюром - он писал о возможности превращения мягкого железа в сталь путем погружения его в жидкий чугун. Но по-настоящему этой идеей заинтересовались лишь в первой половине XIX века, когда назревшие экономические условия настойчиво толкали на поиски способов массового получения стали.

Практический успех в создании нового процесса был достигнут французским металлургом Пьером Мартеном (1824-1915). Ему помогал отец - Эмиль Мартен (1794-1871), который основал собственное дело, приобретя в 1822 году железоделательный завод в Фуршамбо.

Многие годы Пьер Мартен вместе с отцом занимался решением вопроса получения литой стали путем сплавления лома и чугуна на поду пламенной печи. Мартены терпели неудачи, как и другие исследователи, из-за того, что не могли создать в пламенной печи температурный режим, необходимый для сталеплавильного процесса. Нужна была температура свыше 1600° С. Делу помогло использование принципа регенерации тепла, предложенного братьями Сименс. 2 декабря 1856 года немецкий инженер Фридрих Сименс (1826 -1904) взял в Англии, где он жил с 1844 года, патент на устройство регенеративного угольного горна с применением принципа регенерации для воздуха. Продукты горения проходили по кирпичным каналам, следуя сверху вниз из печи в дымовую трубу. Когда кирпичная насадка регенератора получала определенное количество тепла, продукты горения направлялись в другой регенератор, а через раскаленные каналы насадки пропускали холодный воздух. При прохождении через каналы воздух нагревался и поступал в печь с большим запасом физического тепла. Это давало возможность получать в печи высокую температуру.

Получив чертежи регенеративной печи от В. Сименса и редкий в то время английский динасовый кирпич, П. Мартен построил в Сирейле печь, в которой получил 8 апреля 1864 года годную литую сталь. На это производство Мартен взял патент от 10 апреля во Франции и от 15 августа в Англии. В патенте П. Мартен указал три способа получения стали - два на поду и один в вагранке.

П. Мартен более основательно разработал первый из предложенных способов. В патенте от 28 июля 1865 года он описывался так: в ванну расплавленного на поду регенеративной печи чугуна загружаются холодные или нагретые куски железа - лом, обрезки, стружка и при длительном нагреве ванны до высокой температуры получается сталь.

Патент от 23 марта 1866 года излагал тот же способ применительно к переработке отходов бессемеровского производства в виде скрапа. Этим он помог, в дальнейшем решить очень острую для того времени проблему, о которой с тревогой и надеждой писали в технической периодике: "Что делать со старыми бессемеровскими стальными рельсами? Если железные можно было перекатать, то эти нельзя! В одной Англии их в 1867 году положено 30 млн. пуд. Скоро наступит время для перемены их вследствие изнашивания. На помощь является знаменитое изобретение Мартена - его сталеплавильная печь". Возможность переработки скопившегося к тому времени бессемеровского скрапа и другого лома во многом способствовала распространению мартеновского процесса.

25 июля 1867 года П. Мартен взял патент, в котором указывает на применение зеркального чугуна в целях обуглероживания и получения стали определенных свойств.

Успех первых плавок позволил П. Мартену сразу наладить производство литой стали в промышленном масштабе. На заводе Сирейль работали попеременно три печи емкостью по 2-3 тонны.

Мартеновский процесс получил с самого начала благоприятные условия для развития: цены на скрап в 60-70-х годах были невысоки ввиду трудности его использования. Мартеновский процесс не конкурировал с бессемеровским, а как бы дополнял его, перерабатывая стальные отходы бессемеровского производства, скопившиеся в больших количествах на заводах. Оборудование в мартеновском цехе стоило много дешевле, чем в бессемеровском, так как мартеновская фабрика того времени имела весьма примитивное оборудование. По этим причинам, несмотря на несовершенство первых мартеновских печей и большой расход топлива, скрап-процесс считался экономически выгодным.

Мартеновский процесс, введенный в 1864 году, быстро распространялся по металлургическим, заводам разных стран.

Рис 3 Устройство мартеновской печи:

1 — рабочее пространство; 2 — свод; 3 — подина; 4 — сталевыпускное отверстие; 5 — отверстие для спуска шлака; 6 — завалочные окна; 7 — передняя стенка; 8 — задняя стенка; 9 — головки; 10 — вертикальные каналы; 11 — шлаковик; 12 — регенераторы: 13 — насадка регенераторов; 14 — борова; 15 — рабочая площадка.

В первой половине XX века мартеновский процесс занял господствующее положение в мировом производстве стали. До середины нашего века около 80-85% всей стали в мире производилось мартеновским процессом. Пре обладание мартеновского процесса в мировой металлургии было вызвано рядом его преимуществ по сравнению с другими. В мартеновской печи можно использовать большое количество старого лома и возможна работа на любом чугуне. Здесь годилось самое разнообразное сырье, в то время как в конверторном процессе имелись определенные ограничения в химсоставе исходных материалов. Успеху мартеновского процесса способствовала также его разносторонность, пригодность к выплавке самых разнообразных марок стали - от обычной углеродистой до сложнолегированной. Этому помогла основная футеровка, предложенная Томасом.

Уже в первые пять лет после введения мартеновского и бессемеровского производств мировой выпуск стали увеличился на 60%.

Производство стали в мартеновских печах в настоящее время составляет 3,8 % от мирового производства стали в слитках; вероятно, в 2007 г. этот показатель снизится до 2 %. Остальную сталь выплавляют в кислородных конвертерах и электродуговых печах.

 

 

 

 

 

 

 

 

 

 

 

 

Список использованной литературы.

1.      С.И. Венецкий «От костра до плазмы», М.: Знание, 1986.- 208 с.

2.      С.Г. Струмилин «История черной металлургии в СССР» Т.1, М., АН СССР, 1954, 531с.

3.      Н.А Мезенин «Повесть о мастерах железного дела», М.:Знание, 1973

4.      А.И. Целиков «Машины и агрегаты металлургических заводов», Т.2 М.:Металлургия, – 1988 – 432 с.

5.      «Технология металлов и других конструкционных материалов»

В.Т.Жадан, Б.Г. Гринберг, В.Я. Никонов. Издание второе.

 

 

 



Информация о работе Производство стали, Бессемер и Мартен