Метод проекции

Автор: Пользователь скрыл имя, 14 Января 2011 в 18:05, реферат

Описание работы

Для отображения точек оригинала на чертеже применяют операцию проецирования. Имеется плоскость проецирования (ее иногда называют картинная плоскость), на которой получается изображение оригинала - точки А. Операция проецирования заключается в проведении через точку А прямой, которая называется проецирующей..

Работа содержит 1 файл

Документ Microsoft Office Word.docx

— 23.49 Кб (Скачать)

Для отображения точек оригинала на чертеже применяют операцию проецирования. Имеется плоскость проецирования (ее иногда называют картинная плоскость), на которой получается изображение оригинала - точки А. Операция проецирования заключается в проведении через точку А прямой, которая называется проецирующей.. 

В зависимости от положения проецирующих лучей проецирование может быть либо центральным (коническим), либо параллельным (цилиндрическим). 

Для перехода от пространственного представления  о предмете к его плоскому изображению  используется метод проекций. 
 
 Для того чтобы трехмерный объект, находящийся в трехмерном пространстве, "перенести" на плоскость, т. е. получить его изображение, необходимо его спроецировать. Для этого, из выбранной определённым образом точки пространства, которая называется центром проекции, необходимо провести прямые линии (лучи) через каждую точку изображаемого объекта. Эти прямые называются проецирующими прямыми. Та плоскость, на которой мы получили изображение предмета называется плоскостью проекции, а изображение предмета, которое мы получим на этой плоскости называется его проекцией. 
 
 В зависимости от положения центра проецирования и направления проецирующих лучей по отношению к плоскости проекций проецирование может быть либо центральным (коническим), либо параллельным (цилиндрическим).

 
 Наиболее общий случай получения  проекций пространственных фигур - это  центральное проецирование.
 

Свойства  проекций при центральном  проецировании:

  1. Проекцией точки является точка.
  2. Проекцией линии является линия.
  3. Проекцией прямой в общем случае является прямая. (Если прямая совпадает с проецирующим лучом, то её проекцией является точка).
  4. Если точка принадлежит линии, то проекция точки принадлежит проекции линии.
  5. Точка пересечения линий проецируется в точку пересечения проекций этих линий.
  6. В общем случае плоский многогранник проецируется в многогранник с тем же числом вершин.
  7. Проекцией взаимно параллельных прямых является пучок прямых.
  8. Если плоская фигура параллельна плоскости проекций, то её проекция подобна этой фигуре.
 

Параллельное проецирование можно рассматривать как частный случай центрального проецирования
 
 
Если центр проекций при центральном аппарате проецирования перенести в бесконечность, то проецирующие лучи можно считать параллельными. Отсюда аппарат параллельного проецирования состоит из плоскости проекций П и направления Р. При центральном проецировании проецирующие лучи выходят из одной точки, а при параллельном проецировании - параллельны между собой
 
 
В зависимости от направления проецирующих лучей параллельное проецирование может быть косоугольным, когда проецирующие лучи наклонены к плоскости проекций, и прямоугольным (ортогональным), когда проецирующие лучи перпендикулярны к плоскости проекций. 

 
 
Как уже было сказано выше ортогональное проецирование - это частный случай параллельного проецирования. При ортогональном проецировании проецирующие лучи перпендикулярны к плоскости проекций. 

Все свойства параллельного  проецирования выполнимы и для  ортогонального проецирования. Однако ортогональные проекции обладают ещё  некоторыми свойствами. 

Свойства  ортогонального проецирования:

  1. Длина отрезка равна длине его проекции, делённой на косинус угла наклона отрезка к плоскости проекций.
  2. Кроме того, для ортогонального проецирования будет справедлива теорема о проецировании прямого угла:
Теорема:
 

 Если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в натуральную величину.

Доказательство:
  
Дан прямой угол АВС, у которого по условию прямая ВС АВ и ВС || плоскости проекций П1. По построению прямая ВС к проецирующему лучу ВВ1. Следовательно, прямая ВС к плоскости b (АВхВВ1), т. к. она к двум пересекающимся прямым , лежащим в этой плоскости. По условию прямая В1С1 || ВС, поэтому тоже к плоскости b, т. е. и прямой А1В1 этой плоскости. Следовательно, угол между прямыми А1В1 и В1С1 равен 90°, что и требовалось доказать.

Ортогональное проецирование обеспечивает простоту геометрических построений при определении  ортогональных проекций точек, а  так же возможность сохранять  на проекциях форму и размеры  проецируемой фигуры. Эти достоинства  обеспечили ортогональному проецированию  широкое применение в техническом  черчении. 
 
 Рассмотренные методы проецирования позволяют решить прямую задачу начертательной геометрии, т. е. по оригиналу построить плоский чертёж. Полученные таким образом проекции на одну плоскость дают неполное представление о предмете, его форме и положении в пространстве, т. е. такой чертёж не обладает свойством обратимости.  
 
 Чтобы получить обратимый чертеж, т.е. чертеж дающий полное представление о форме, размерах и положении оригинала в пространстве, однокартинный чертеж дополняют. В зависимости от дополнения существуют различные виды чертежей.

  1. Эпюр Монжа или ортогональные проекции. 
     
    Суть метода ортогональные (прямоугольных) проекций состоит в том, что оригинал ортогонально проецируют на 2 или 3 взаимно-ортогональные плоскости проекций, а затем совмещают их с плоскостью чертежа.
  2. Аксонометрический чертеж. 
     
    Суть аксонометрического чертежа в том, что сначала оригинал жестко связывают с декартовой системой координат OXYZ, ортогонально проецируют его на одну из плоскостей проекций OXY, или OXZ. Затем параллельным проецированием находят параллельную проекцию полученной конструкции: осей координат OX, OY, OZ, вторичной проекции и оригинала.
  3. Перспективный чертеж. 
     
    При построении перспективного чертежа сначала строят одну ортогональную проекцию, а затем на картинной плоскости находят центральную проекцию построенной ранее ортогональной проекции и самого оригинала.
  4. Проекции с числовыми отметками и др. 
     
    Чтобы получить проекции с числовыми отметками ортогонально проецируют оригинал на плоскость нулевого уровня и указывают расстояние от точек оригинала до этой плоскости.
 

Информация о работе Метод проекции