Внутреннее строение Земли

Автор: Пользователь скрыл имя, 09 Апреля 2011 в 15:49, реферат

Описание работы

Земля́ (лат. Terra) — третья от Солнца планета Солнечной системы, крупнейшая по диаметру, массе и плотности среди планет земной группы.
Чаще всего упоминается как Земля, планета Земля, Мир. Единственное известное человеку на данный момент тело Солнечной системы в частности и Вселенной вообще, населённое живыми существами.

Работа содержит 1 файл

КСЕ.docx

— 91.51 Кб (Скачать)

Казанский (Приволжский) федеральный  университет 
 
 
 
 

Внутреннее  строение Земли 
 
 
 
 
 
 

Выполнили: Брысикова Алина

Гизатуллина Алия

студентки 1 курса группы 1403 
 
 
 

Казань 2011 г. 

  Земля́ (лат. Terra) — третья от Солнца планета Солнечной системы, крупнейшая по диаметру, массе и плотности среди планет земной группы.

  Чаще всего  упоминается как Земляпланета ЗемляМир. Единственное известное человеку на данный момент тело Солнечной системы в частности и Вселенной вообще, населённое живыми существами

  Не  просто «заглянуть» в недра Земли. Даже самые глубокие скважины на суше едва преодолевают 10 километровый рубеж, а под водой удаётся, пройдя осадочный  чехол, проникнуть в базальтовый  фундамент не более чем на 1,5 км. Однако нашёлся другой способ. Как  в медицине рентгеновские лучи позволяют  увидеть внутренние органы человека, так при исследовании недр планеты на помощь приходят сейсмические волны. Скорость сейсмических волн зависит от плотности и упругих свойств горных пород, через которые они проходят. Более того, они отражаются от границ между пластами пород разного типа и преломляются на этих границах. 
По записям колебаний земной поверхности при землетрясениях — сейсмограммам — было установлено, что недра Земли состоят из трёх основных частей: коры, оболочки (мантии) и ядра. 
Кора отделяется от оболочки отчётливой границей, на которой скачкообразно возрастают скорости сейсмических волн, что вызвано резким повышением плотности вещества. Эта граница носит название раздел Мохоровичича (иначе — поверхность Мохо или раздел М) по фамилии сербского сейсмолога, открывшего её в 1909 г. 
Толщина коры непостоянна, она изменяется от нескольких километров в океанических областях до нескольких десятков километров в горных районах материков. В самых грубых моделях Земли кору представляют в виде однородного слоя толщиной порядка 35 км. Ниже, до глубины примерно 2900 км, расположена мантия. Она, как и земная кора, имеет сложное строение. 
Ещё в XIX столетии стало ясно, что у Земли должно быть плотное ядро. Действительно, плотность наружных пород земной коры составляет около 2800 кг/м3для гранитов и примерно 3000 кг/мдля базальтов, а средняя плотность нашей планеты — 5500 кг/м. В то же время су шествуют железные метеориты со средней плотностью 7850 кг/ми возможна ещё более значительная концентрация железа. Это послужило основанием для гипотезы о железном ядре Земли. А в начале XX в. были получены первые сейсмологические свидетельства его существования. 
Граница между ядром и мантией наиболее отчётливая. Она сильно отражает продольные (Р) и поперечные (S) сейсмические волны и преломляет Р-волны. Ниже этой границы скорость Р-волн резко падает, а плотность вещества возрастает: от 5600 кг/мдо 10 000 кг/м. S-волны ядро вообще не пропускает. Это означает, что вещество там находится в жидком состоянии. 
   Есть и другие свидетельства в пользу гипотезы о жидком железном ядре планеты. Так, открытое в 1905 г. изменение магнитного поля Земли в пространстве и по интенсивности привело к заключению, что оно зарождается в глубинах планеты. Там сравнительно быстрые движения могут происходить, не вызывая катасгрофических последствий. Наиболее вероятный источник такого поля — жидкое железное (т. е. проводящее токи) ядро, где возникают движения, действующие по механизму самовозбуждающегося динамо. В нём должны существовать токовые петли, грубо напоминающие витки провода в электромагните, которые и генерируют различные составляющие геомагнитного поля. 
В 30-е гг. сейсмологи установили, что у Земли есть и внутреннее, твёрдое ядро. Современное значение глубины границы между внутренним и внешним ядрами примерно 5150 км, переходная зона довольно тонкая — около 5 км. 
Граница наружной зоны Земли — литосферы — расположена на глубине порядка 70 км. Литосфера включает в себя как земную кору, так и часть верхней мантии. Этот жёсткий слой объединяется в единое целое его механическими свойствами. Литосфера расколота примерно на десять больших плит, на границах которых случается подавляющее число землетрясений. 
Под литосферой на глубинах от 70 до 250 км существует слой повышенной текучести — так называемая астеносфера Земли. Жёсткие лито-сферные плиты плавают в «астеносферном океане». 
В астеносфере температура мантийного вещества приближается к температуре его плавления. Чем глубже, тем выше давление и температура. В ядре Земли давление превышает З600 кбар, а температура — 6000 °С.  

  Внутреннее  строение

  Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твёрдых силикатныхоболочек (коры, крайне вязкой мантии), и металлическогоядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя — твёрдая. Геологические слои Земли[ по глубине от поверхности:

  Внутренняя  теплота планеты, скорее всего, обеспечивается радиоактивным распадом изотопов калия-40,урана-238 и тория-232. У всех трёх элементов период полураспада составляет более миллиарда лет. В центре планеты, температура, возможно, поднимается до 7 000 К, а давление может достигать 360 ГПа (3,6 млн. атм). Часть тепловой энергии ядра передаётся к земной коре посредством плюмов. Плюмы приводят к появлению горячих точек и траппов.

  Земная  кора

  Земная  кора — это верхняя часть твёрдой земли. От мантии отделена границей с резким повышением скоростей сейсмических волн — границей Мохоровичича. Бывает два типа коры — континентальная и океаническая. Толщина коры колеблется от 6 км под океаном, до 30—50 км на континентах.[34] В строении континентальной коры выделяют три геологических слоя: осадочный чехолгранитный и базальтовый. Океаническая кора сложена преимущественно породамиосновного состава, плюс осадочный чехол. Земная кора разделена на различные по величине литосферные плиты, двигающиеся относительно друг друга. Кинематику этих движений описывает тектоника плит.

  Мантия  Земли

  Мантия — это силикатная оболочка Земли, сложенная преимущественно перидотитами — породами, состоящими из силикатов магнияжелезакальция и др. Частичное плавление мантийных пород порождает базальтовые и им подобные расплавы, формирующие при подъёме к поверхности земную кору.

  Мантия  составляет 67 % всей массы Земли и около 83 % всего объёма Земли. Она простирается от глубин 5—70 километров ниже границы с земной корой, до границы с ядром на глубине 2900 км. Мантия расположена в огромном диапазоне глубин, и с увеличением давления в веществе происходят фазовые переходы, при которых минералы приобретают всё более плотную структуру. Наиболее значительное превращение происходит на глубине 660 километров. Термодинамика этого фазового перехода такова, что мантийное вещество ниже этой границы не может проникнуть через неё, и наоборот. Выше границы 660 километров находится верхняя мантия, а ниже, соответственно, нижняя. Эти две части мантии имеют различный состав и физические свойства. Хотя сведения о составе нижней мантии ограничены, и число прямых данных весьма невелико, можно уверенно утверждать, что её состав со времён формирования Земли изменился значительно меньше, чем верхней мантии, породившей земную кору.

  Теплоперенос  в мантии происходит путём медленной  конвекции, посредством пластической деформации минералов. Скорости движения вещества при мантийной конвекции составляют порядка нескольких сантиметров в год. Эта конвекция приводит в движение литосферные плиты (см. тектоника плит). Конвекция в верхней мантии происходит раздельно. Существуют модели, которые предполагают ещё более сложную структуру конвекции.

  Ядро  Земли

  Ядро — центральная, наиболее глубокая часть Земли, геосфера, находящаяся под мантией и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2900 км. Средний радиус сферы — 3,5 тыс. км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро радиусом около 2200 км, между которыми иногда выделяется переходная зона. Температура в центре ядра Земли достигает 5000 С, плотность около 12,5 т/м³,давление до 361 ГПа. Масса ядра — 1,932×1024 кг. 

  Понятие “сейсморазведка” входят геофизические методы исследования земной коры, основанные на изучении искусственно возбуждаемых упругих волн. При помощи сейсморазведки изучается глубинное строение Земли, выделяются месторождения полезных ископаемых (в основном нефти и газа), решаются задачи гидрогеологии и инженерной геологии. Сейсморазведка отличается надежностью, высокой разрешающей способностью, технологичностью и колоссальным объемом получаемой информации.

  В основе сейсмических методов лежит возбуждение  упругих волн при помощи специального технического комплекса – источника. В результате геологическая среда  реагирует возникновением периодического колебательного процесса и образованием упругой волны. Распространяясь  в объеме горных пород, упругая волна  попадает на границы раздела, изменяет направление и динамические свойства, образуются новые волны. На пути следования волн размещаются точки наблюдения, где при помощи специальных приборов – сейсмоприемников – определяются свойства колебательных процессов. Из полученных данных извлекается полезная информация о строении и составе изучаемой среды.

  Наиболее  эффективна сейсморазведка при изучении осадочного чехла древних платформ, поскольку его горизонтально-слоистое строение наиболее просто интерпретируется по сейсмических данным. С увеличением наклона целевых геологических границ надежность получаемой сейсморазведкой информации резко падает.

    Возбуждение упругих  волн

  Для возбуждения  колебаний применяется взрывы зарядов  тротила в неглубоких скважинах, а также длительное (вибрационное) или короткое (иипульсное) ударное воздействие на горные породы. Взрывные источники характеризуются наибольшей мощностью и компактностью, при этом требуют дорогостоящих подготовительных и ликвидационных работ, а также наносят большой урон окружающей среде.

  Невзрывные  источники гораздо слабее, но могут  использоваться многократно в одной  и той же точке, более управляемы, а также безопаснее для человека и экологии.

  Источник  возбуждает два типа независимых  сейсмических волн – продольные и  поперечные. С продольными волнами  связаны колебания, направленные вдоль  луча волны, а с поперечными - поперек. Эти волны получили название первичных или падающих.

  Первичной (падающей) волной называется продольная или поперечная волна, распространяющаяся непосредственно от источника к  точке наблюдения. Продольные волны  характеризуются большими скоростями, приходят в любую точку среды  раньше поперечных, распространяются практически в любых веществах  и меньше. В силу этих обстоятельств  сейсморазведка использует преимущественно  продольные волны.

  Модель  среды и волновое поле

  Установлено, что различные горные породы характеризуются  различными скоростями распространения  упругих волн. Параметр скорости определяется упругими константами и плотностью горной породы, а они в свою очередь  зависят от минерального состава, пористости, трещиноватости и глубины залегания.

  По значению скорости упругой волны геологический  разрез разделяется на относительно однородные слои горных пород, на границах которых скорость меняется скачком. Как правило, границы областей с  различными физическими свойствами совпадают с геологическими границам, что используется при интерпретации  сейсмических данных.Наличие резких границ раздела между пластами приводит к образованию вторичных волн – отраженных, проходящих и преломленных. Интенсивность вторичных волн зависит от контрастности границы по упругим свойствам. Чем сложнее строение изучаемой геологической среды, тем больше волн образуется на ее границах раздела. Все вместе они образуют вторичное волновое поле – объект измерения в сейсморазведке. Если вторичные волны содержат информацию о целевых геологических границах и успешно регистрируются на поверхности земли или в стволе скважины, то они называются полезными. По типу выделяемых полезных волн в сейсморазведке различают методы отраженных и преломленных волн.

    Прием колебаний

  Основным  измерительным устройством в  сейсморазведке служит сейсмоприемник, преобразующий механические колебания  упругих волн в электрический  ток переменного напряжения. При  перемещении частиц горных пород  вблизи корпуса приемника в нем  вырабатываются электрические импульсы, которые затем откладываются  на оси времени. Получаемые зависимости  называются графиками колебаний  или сейсмотрассами.

  Сейсмотрассы объединяются в сейсмограммы – первичный полевой материал сейсморазведки . Сигналы от приемников подвергаются предобработке ¬- усилению, фильтрации нежелательных колебаний и преобразований в цифровую форму. По независимым информационным каналам данные с точек наблюдения поступают в единый центр – сейсмическую станцию, где представляются в удобной для оператора форме. Сейсмическая станция представляет единый информационно-измерительный комплекс, предназначенный для объединения данных с сейсмоприемников, их предобработки, визуального анализа и сохранения на устройство памяти.

  Методы  сейсморазведки

  Методы  сейсморазведки различаются по типу используемых полезных волн, по стадии геологоразведочного процесса, по решаемым задачам, по способу получения данных, по размерности, по типу источника колебаний  и частоте колебаний целевых  волн.

Информация о работе Внутреннее строение Земли